Abstract
Fujita approximation is an approximative version of Zariski decomposition of pseudo-effective divisors. More precisely, it says that a power of a big line bundle can be decomposed as the sum of an ample and an effective line bundle under a birational morphism, where the volume of this big line bundle can be approximated by that of the ample one in some sense. An arithmetic analogue over number fields was proved by H. Chen and X. Yuan. In this talk, I will introduce a generalization under the framework of Arakelov geometry over adelic curves.
南方科技大学数学系微信公众号
© 2015 All Rights Reserved. 粤ICP备14051456号
Address: No 1088,xueyuan Rd., Xili, Nanshan District,Shenzhen,Guangdong,China 518055 Tel: +86-755-8801 0000