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EXACT FORMULA FOR THE SECOND-ORDER TANGENT SET OF
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Abstract. The second-order tangent set is an important concept in describing the curvature
of the set involved. Due to the existence of the complementarity condition, the second-order cone
(SOC) complementarity set is a nonconvex set. Moreover, unlike the vector complementarity set, the
SOC complementarity set is not even the union of finitely many polyhedral convex sets. Despite these
difficulties, we succeed in showing that like the vector complementarity set, the SOC complementarity
set is second-order directionally differentiable and an exact formula for the second-order tangent
set of the SOC complementarity set can be given. We derive these results by establishing the
relationship between the second-order tangent set of the SOC complementarity set and the second-
order directional derivative of the projection operator over the SOC, and calculating the second-order
directional derivative of the projection operator over the SOC. As an application, we derive second-
order necessary optimality conditions for the mathematical program with SOC complementarity
constraints.
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1. Introduction. In optimization, an important issue is how to approximate
the feasible region using derivatives of the function and the tangent cone of the set in-
volved. Such needs arise in optimality conditions, constraint qualifications, and stabil-
ity analysis when the problem data are perturbed. In the same way that second-order
derivatives provide quadratic approximations whereas first-order derivatives only pro-
vide linear approximation to a given function, second-order tangent sets provide better
approximation than tangent cones to a set at a point, in particular when the given set
is not a polyhedral set or the union of finitely many polyhedral sets. As a result, the
second-order tangent sets have been used successfully in second-order optimality con-
ditions, stability analysis, and metric subregularity (see, e.g., [2, 3, 4, 7, 8, 10, 13, 16]
and references therein). More recently, Gfrerer and Mordukhovich [11] use the second-
order tangent set to give an estimate of the upper curvature of a set, which is used to
study the Robinson stability of parametric constraint systems.
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In optimization, one often has to deal with a feasible region in the form C :=
{x | F (x) ∈ Θ}, where F : Rn → Rm is a second-order continuously differentiable
mapping and Θ is a closed set in Rm. By [18, Proposition 13.13], under a constraint
qualification, the second-order tangent set of the feasible region C can be characterized
as

d ∈ TC(x),
w ∈ T 2

C(x, d)

}
⇐⇒

{
∇F (x)d ∈ TΘ(F (x)),
∇F (x)w + dT∇2F (x)d ∈ T 2

Θ(F (x);∇F (x)d),
(1)

where TC , T 2
C denote the tangent cone and the second-order tangent set, respectively

(see Definition 2.1). In the case when Θ = Rm1
− × {0}m2 , m1 + m2 = m, the system

is described by inequality and equality constraints. In this case, since the set Θ is
polyhedral, the second-order tangent set of Rm1

− × {0}m2 is a polyhedral set, and
hence the second-order tangent set of the feasible region is a system of equalities and
inequalities involving the second-order derivatives of the constraint mapping F (see,
e.g., Bonnans and Shapiro [4, equation (3.81)]), provided that a constraint qualifica-
tion holds. In recent years, the second-order cone programming (SOCP) has attracted
much attention due to a broad range of applications in fields from engineering, con-
trol, and finance to robust optimization and combinatorial optimization (see, e.g., [1]
for an introduction to the theory and its applications).

Consider the second-order cone defined as

K := {(x1, x2) ∈ R× Rm−1 | ‖x2‖ ≤ x1},

where ‖ · ‖ denotes the Euclidean norm. Bonnans and Ramı́rez gave the characteriza-
tion for the second-order tangent set [3, Lemma 27], and used it to formulate second-
order necessary and sufficient optimality conditions for nonlinear SOCPs. Since the
second-order cone is not polyhedral, the second-order tangent set is not polyhedral [3].

In recent years, there has been more and more research on the second-order cone
(SOC) complementarity system defined as

K 3 G(z) ⊥ H(z) ∈ K,

where u ⊥ v means the vectors u and v are perpendicular, G(z), H(z) : Rn → Rm.
One of the sources of the SOC complementarity system is the Karush–Kuhn–Tucker
(KKT) optimality condition for second-order cone programming (see, e.g., [1, 5]), and
the other is the equilibrium system for a Nash game where the constraints involve
second-order cones (see, e.g., [14]). We call the closed cone

Ω := {(x, y) ∈ R2m | K 3 x ⊥ y ∈ K}

the SOC complementarity set (or the complementarity set associated with the second-
order cone; c.f. [15]). Using the SOC complementarity set, the SOC complementarity
system can be reformulated as (G(z), H(z)) ∈ Ω. Due to the existence of the comple-
mentarity condition, the SOC complementarity set is a nonconvex set. Moreover, due
to the nonpolyhedral structure of the second-order cone K, the SOC complementarity
set is also nonpolyhedral. Hence the SOC complementarity set is a difficult object to
study in the variational analysis.

The main goal of this paper is to provide a precise formula for the second-order
tangent set to the SOC complementarity set Ω. The projection operator over the
second-order cone ΠK(x) := arg minx′∈K ‖x′ − x‖ is one of our main tools in the
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subsequent analysis. It is well known that the metric projection operator ΠK(x)
provides an alternative characterization of the SOC complementarity set:

(x, y) ∈ Ω⇐⇒ ΠK(x− y) = x.(2)

The projection operator ΠK(x) is known to be first-order directionally differentiable
(see, e.g., [17, Lemma 2]) and the connection between its tangent cone and its direc-
tional derivative has been given (see [15, 21]): for any (x, y) ∈ Ω,

(3) (d,w) ∈ TΩ(x, y)⇐⇒ Π′K(x− y; d− w) = d.

Using this connection, it has been shown that the SOC complementarity set Ω is
geometrically derivable and the exact formula for its tangent cone is given; see, e.g.,
[21, Theorem 5.1]. Moreover, the coderivative of the projection operator ΠK allows us
to characterize the various normal cones as in [20, Proposition 2.1] and show that the
SOC complementarity set is not only geometrically derivable but also directionally
regular [21, Theorem 6.1]. So far, by using the first-order variational analysis, it has
been revealed that although the SOC complementarity set is neither a convex set nor
the union of finitely many polyhedral convex sets, it enjoys certain nice properties
that a convex set or the union of finitely many polyhedral convex sets have. In this
paper, we continue to investigate the second-order variational properties of the SOC
complementarity cone. Our main contributions are as follows.

• We derive the exact formula for the second-order directional derivative of
the projection operator over the second-order cone. We further establish
the connection between the second-order tangent set and the second-order
directional derivative of the projection operator: for any (x, y) ∈ Ω and
(d,w) ∈ TΩ(x, y),

(4) (p, q) ∈ T 2
Ω((x, y); (d,w))⇐⇒ Π′′K(x− y; d− w, p− q) = p.

• We show that the SOC complementarity set is second-order directionally
differentiable (see Definition 2.2). Note that this nice property is not even
enjoyed by a convex set (see [4, Example 3.31]).

• Using the characterization (4) and the precise formula for the second-order
directional derivative of the projection operation over the second-order cone,
we derive the exact formula for the second-order tangent set of the SOC
complementarity set. Compared with the usual vector complementarity set,
our research shows that the task of establishing the formula of the second-
order tangent set to the second-order cone complementarity set, which has
nonpolyhedral and nonconvex structure, is not trivial.

• Based on the exact formula of the second-order tangent set of Ω, we develop
the second-order optimality conditions for the mathematical program with
second-order cone complementarity constraints (SOCMPCC).

We organize our paper as follows. Section 2 contains the preliminaries. In sec-
tion 3, we calculate the second-order directional derivative of the projection operator
over the second-order cone. Section 4 is devoted to the exact formula of the second-
order tangent set to the SOC complementarity set. The second-order optimality
conditions of SOCMPCC are discussed in section 5.

2. Preliminaries. In this section, we clarify the notation and recall some back-
ground material. First, we denote by R+ and R++ the set of nonnegative scalars and
positive scalars, respectively, i.e., R+ := {α | α ≥ 0} and R++ := {α | α > 0}. For a
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set C, denote by intC, clC, bdC, coC, Cc its interior, closure, boundary, convex hull,
and complement, respectively. For a closed set C ⊆ Rn, let C◦ and σ(·|C) stand for
the polar cone and the support function of C, respectively, i.e.,

C◦ := {v | 〈v, w〉 ≤ 0 ∀w ∈ C}

and σ(z|C) := sup{〈z, x〉 | x ∈ C} for z ∈ Rn. Denote by linC the largest subspace
L such that C + L ⊆ C. For a vector x = (x1, x2) ∈ R × Rn−1, we denote by
x◦ the polar set of the set {x} and by x̂ := (x1,−x2) the reflection of vector x on
the x1 axis. For a nonzero vector x, we define x̄ := x/‖x‖. Let o(λ) : R+ → Rm
stand for a mapping with the property that o(λ)/λ → 0 when λ ↓ 0. For a mapping
F : Rn → Rm and vectors x, d ∈ Rn, we denote by ∇F (x) ∈ Rm×n the Jacobian
of F at x, by ∇2F (x) the second-order derivative of F at x, and by ∇2F (x)(d, d)
the quadratic form corresponding to ∇2F (x). The directional derivative of F at x in
direction d is defined as

F ′(x; d) := lim
t↓0

F (x+ td)− F (x)

t
,

provided that the above limit exists. If F is directionally differentiable at x in direction
d, its parabolic second-order directional derivative is defined as

F ′′(x; d,w) := lim
t↓0

F (x+ td+ 1
2 t

2w)− F (x)− tF ′(x; d)
1
2 t

2
,

provided that the above limit exists. Moreover if the limit

F ′′(x; d,w) = lim
t↓0,
w′→w

F (x+ td+ 1
2 t

2w′)− F (x)− tF ′(x; d)
1
2 t

2

exists, then F is said to be parabolical second-order directionally differentiable at x
in the direction d in the sense of Hadamard. In general, the concept of parabolical
second-order directional differentiability in the Hadamard sense is stronger than that
of parabolical second-order directional differentiability. However, when F is locally
Lipschitz at x, these two concepts coincide. It is known that if F is parabolical
second-order directional differentiable in the Hadamard sense at x along d, w, then

F

(
x+ td+

1

2
t2w + o(t2)

)
= F (x) + tF ′(x; d) +

1

2
t2F ′′(x; d,w) + o(t2).

Definition 2.1 (tangent cones). Let S ⊆ Rm and x ∈ S. The regular/Clarke,
inner, and (Bouligand–Severi) tangent/contingent cone to S at x are defined respec-
tively as

T̂S(x) := lim inf
x′
S→x,
t↓0

S − x′

t
=
{
d ∈ Rm

∣∣∣∀ tk ↓ 0, xk
S→ x, ∃dk → d with xk + tkdk ∈ S

}
,

T iS(x) := lim inf
t↓0

S − x
t

=
{
d ∈ Rm

∣∣∣∀ tk ↓ 0, ∃dk → d with x+ tkdk ∈ S
}
,

TS(x) := lim sup
t↓0

S − x
t

=
{
d ∈ Rm

∣∣∣∃ tk ↓ 0, dk → d with x+ tkdk ∈ S
}
.
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The inner and outer second-order tangent sets to S at x in direction d are defined
respectively as

T i,2S (x; d) :=

{
w ∈ Rm

∣∣∣∣ dist

(
x+ td+

1

2
t2w, S

)
= o(t2), t ≥ 0

}
,

T 2
S(x; d) :=

{
w ∈ Rm

∣∣∣∣ ∃ tn ↓ 0 such that dist

(
x+ tnd+

1

2
t2nw, S

)
= o(t2n)

}
.

While for a nonconvex set S, the contingent cone TS(x) may be nonconvex, it
is known that the regular/Clarke tangent cone T̂S(x) is always closed and convex.
By definition, since the distance function of a convex set is convex, it is easy to see
that the inner second-order tangent set is always convex when the set S is convex.
On the other hand, the outer second-order tangent set may be nonconvex even when
the set S is convex (see [4, Example 3.35]). Note that T i,2S (x; d) ⊆ T 2

S(x; d) and the
outer second-order tangent set T 2

S(x; d) need not be a cone (it may be empty; see,

for instance, an example in [18, Page 592]). If T i,2S (x; d) = T 2
S(x; d), we simply call

T 2
S(x; d) the second-order tangent set to S at x in direction d.

Definition 2.2 (see [4, Definition 3.32]). A set S is said to be second-order
directionally differentiable at x ∈ S in a direction d ∈ TS(x) if T iS(x) = TS(x) and

T i,2S (x; d) = T 2
S(x; d).

Definition 2.3 (normal cones). Let S ⊆ Rm and x ∈ S. The regular/Fréchet,
limiting/Mordukhovich, and Clarke normal cone of S at x are defined respectively as

N̂S(x) :=
{
v ∈ Rm

∣∣∣ 〈v, x′ − x〉 ≤ o(‖x′ − x‖) ∀x′ ∈ S},
NS(x) := lim sup

x′
S→x

N̂S(x′) =
{

lim
k→∞

vk

∣∣∣ vk ∈ N̂S(xk), xk
S→ x

}
,

N c
S(x) := clcoNS(x).

Lemma 2.4 (tangent-normal polarity (see [18, Theorem 6.28], [6])). For a closed

set S ⊆ Rm and x ∈ S, T̂S(x) = (NS(x))◦ = (N c
S(x))◦, N̂S(x) = (TS(x))◦, (T̂S(x))◦ =

N c
S(x).

We recall some known results concerning the second-order cone K in Rm. The
topological interior and the boundary of K are

intK = {(x1, x2) ∈ R× Rm−1 | x1 > ‖x2‖}

and

bdK = {(x1, x2) ∈ R× Rm−1 | x1 = ‖x2‖},

respectively. Similar to the eigenvalue decomposition of a matrix, for any given vector
x := (x1, x2) ∈ R× Rm−1, x can be decomposed as (see, e.g., [9])

x = λ1(x)u(1)
x + λ2(x)u(2)

x ,

where λi(x) and u
(i)
x for i = 1, 2 are the spectral values and the associated spectral

vectors of x, respectively, given by

λi(x) := x1 + (−1)i‖x2‖ and u(i)
x :=

{
1
2 (1, (−1)ix̄2) if x2 6= 0,
1
2 (1, (−1)iw) if x2 = 0,

with w being a fixed unit vector in Rm−1.
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Lemma 2.5 (see [3]). For any x, y ∈ bdK\{0}, the following equivalence holds:

xT y = 0⇐⇒ y = kx̂ with k = y1/x1 > 0⇐⇒ y = kx̂ with k ∈ R++.

For a given real-valued function f : R → R, we define the SOC function f soc :
Rm → Rm as

(5) f soc(z) := f (λ1(z))u(1)
z + f (λ2(z))u(2)

z .

For z ∈ Rm, let ΠK(z) be the metric projection of z onto K. Then by [9], it can be
calculated as

(6) ΠK(z) = λ1(z)+u
(1)
z + λ2(z)+u

(2)
z ,

where α+ := max{α, 0} is the nonnegative part of the number α ∈ R. Hence the
projection operator ΠK(·) is an SOC function corresponding to the plus function
f(α) := α+.

3. Second-order directional derivative of the projection operator over
the second-order cone. As commented in the introduction, there exists a close
relationship between the second-order tangent set of the SOC complementarity set
and the second-order directional derivative of the projection operator ΠK; see (4).
Therefore, to obtain the exact formula of the second-order tangent set, we need to
calculate the second-order directional derivative of the projection operator ΠK. This
task is done in this section, which is of independent interest. For convenience of
notation, we sometime use Φ(x) instead of x̄ to stand for x/‖x‖ as x 6= 0. It is easy to
verify (see, e.g., [23, Theorem 3.1]) that Φ is second-order continuously differentiable
at x 6= 0 with

∇Φ(x) = (I − x̄x̄T )/‖x‖,

∇2Φ(x)(w,w) = −2
x̄Tw

‖x‖2
w + wT

(
3x̄x̄T − I
‖x‖3

)
wx

= −2
x̄Tw

‖x‖
∇Φ(x)(w)− 1

‖x‖
wT∇Φ(x)wx̄,

where I is the identity matrix in Rm×m.
Since the second-order cone K is a special circular cone Lθ defined by

Lθ := {(x1, x2) ∈ R× Rm−1 | cos θ‖x‖ ≤ x1}

with θ = 45◦, the SOC function f soc is a special case of the circular cone function
fLθ studied in [23] with θ = 45◦. The following result follows from [23, Theorem 3.3]
immediately.

Lemma 3.1. Suppose that f : R → R. Then, the SOC function f soc is parabolic
second-order directionally differentiable at x in the Hadamard sense if and only if f
is parabolic second-order directionally differentiable at λi(x) in the Hadamard sense
for i = 1, 2. Moreover,

(i) if x2 = 0 and d2 = 0, then

(f soc)
′′
(x; d,w) = f

′′
(x1; d1, w1 − ‖w2‖)u(1)

w + f
′′

(x1; d1, w1 + ‖w2‖)u(2)
w ;
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(ii) if x2 = 0 and d2 6= 0, then

(f soc)
′′
(x; d,w) = f

′′ (
x1; d1 − ‖d2‖, w1 − d̄T2 w2

)
u

(1)
d

+f
′′ (
x1; d1 + ‖d2‖, w1 + d̄T2 w2

)
u

(2)
d

+
1

2

(
f ′(x1; d1 + ‖d2‖)− f ′(x1; d1 − ‖d2‖)

)( 0
∇Φ(d2)w2

)
;

(iii) if x2 6= 0, then

(f soc)
′′
(x; d,w)

= f
′′ (
x1 − ‖x2‖; d1 − x̄T2 d2, w1 −

[
x̄T2 w2 + dT2∇Φ(x2)d2

])
u(1)
x

+f
′′ (
x1 + ‖x2‖; d1 + x̄T2 d2, w1 +

[
x̄T2 w2 + dT2∇Φ(x2)d2

])
u(2)
x

+
(
f ′(x1 + ‖x2‖; d1 + x̄T2 d2)− f ′(x1 − ‖x2‖; d1 − x̄T2 d2)

)( 0
∇Φ(x2)d2

)
+

1

2

(
f(x1 + ‖x2‖)− f(x1 − ‖x2‖)

)( 0
∇Φ(x2)w2 +∇2Φ(x2)(d2, d2)

)
.

Since the projection operator ΠK(·) is the SOC function corresponding to the plus
function f(α) := α+, we will need the second-order directional derivative of the plus
function.

Lemma 3.2 (see [22]). Let f(α) := α+ for α ∈ R. Then f is parabolic second-
order directionally differentiable at x in the Hadamard sense and

f ′(x; d) =

 d if x > 0,
d+ if x = 0,
0 if x < 0,

and

f
′′
(x; d,w) =

 w if x > 0 or x = 0, d > 0,
0 if x < 0 or x = 0, d < 0,
w+ if x = d = 0.

Since in the formula of the second-order directional derivative of the projection
operator we will need the tangent cone and the second-order tangent set for the set
K and its polar K◦, for convenience we summarize their formulas in the following two
lemmas.

Lemma 3.3 (see [3, Lemmas 25 and 27]). For any x ∈ K, one has

TK(x) =

 Rm if x ∈ intK,
K if x = 0,
{d ∈ Rm | −d1 + x̄T2 d2 ≤ 0} if x ∈ bdK\{0}.

For any x ∈ K and d ∈ TK(x),

T 2
K(x; d) =

 Rm if d ∈ intTK(x),
TK(d) if x = 0,
{w | wT2 x2 − w1x1 ≤ d2

1 − ‖d2‖2} if x ∈ bdK\{0}, d ∈ bdTK(x).
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Applying [3, Lemmas 25 and 27] to K◦ = −K yields the following result.

Lemma 3.4. For x ∈ K◦, one has

TK◦(x) =

 Rm if x ∈ intK◦,
K◦ if x = 0,
{d ∈ Rm | d1 + x̄T2 d2 ≤ 0} if x ∈ bdK◦\{0}.

For x ∈ K◦ and d ∈ TK◦(x), one has

T 2
K◦(x; d) =

 Rm if d ∈ intTK◦(x),
TK◦(d) if x = 0,
{w | wT2 x2 − w1x1 ≤ d2

1 − ‖d2‖2} if x ∈ bdK◦\{0}, d ∈ bdTK◦(x).

We are now ready to give the second-order directional derivative of the projection
operator.

Theorem 3.5. The projection operator ΠK is parabolic second-order directionally
differentiable in the Hadamard sense. Moreover, for any x, d, w ∈ Rm, the second-
order directional derivative can be calculated as in the following six cases.

Case (i): x ∈ intK. We have Π
′′

K(x; d,w) = w.

Case (ii): x ∈ intK◦. We have Π
′′

K(x; d,w) = 0.
Case (iii): x = 0. We have

Π
′′

K(x; d,w) =

w if d ∈ intK,
0 if d ∈ intK◦,
1

2

(
w1 + d̄T2 w2[

w1 − d1

‖d2‖ d̄
T
2 w2

]
d̄2 +

[
1 + d1

‖d2‖

]
w2

)
if d ∈ (K ∪ K◦)c,

w if d ∈ bdK\{0}, w ∈ TK(d),
1

2

(
w1 + d̄T2 w2

2w2 + (w1 − d̄T2 w2)d̄2

)
if d ∈ bdK\{0}, w /∈ TK(d),

0 if d ∈ bdK◦\{0}, w ∈ TK◦(d),

1
2 (w1 + d̄T2 w2)

(
1
d̄2

)
if d ∈ bdK◦\{0}, w /∈ TK◦(d),

ΠK(w) if d = 0.

Case (iv): x ∈ bdK\{0}. We have

Π
′′

K(x; d,w) =

w if d ∈ intTK(x),
w if d ∈ bdTK(x), w ∈ T 2

K(x; d),

1

2

 w1 + x̄T2 w2 +
‖d2‖2−d2

1

‖x2‖[
w1 − x̄T2 w2 − ‖d2‖2−d2

1

‖x2‖

]
x̄2 + 2w2

 if d ∈ bdTK(x), w /∈ T 2
K(x; d),

1

2

 w1 + x̄T2 w2 +
‖d2‖2−(x̄T2 d2)2

‖x2‖[
w1 − x̄T2 w2 − ‖d2‖2−3(x̄T2 d2)2+2d1x̄

T
2 d2

‖x2‖

]
x̄2 + 2w2 + 2

d1−x̄T2 d2

‖x2‖ d2

 if d ∈ TK(x)c.
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Case (v): x ∈ bdK◦\{0}. We have

Π
′′

K(x; d,w) =

0 if d ∈ intTK◦(x),

0 if d ∈ bdTK◦(x), w ∈ T 2
K◦(x; d),

1

2

(
w1 + x̄T2 w2 +

‖d2‖2−d2
1

‖x2‖

)( 1
x̄2

)
if d ∈ bdTK◦(x), w /∈ T 2

K◦(x; d),

1

2

 w1 + x̄T2 w2 +
‖d2‖2−(x̄T2 d2)2

‖x2‖[
w1 + x̄T2 w2 +

‖d2‖2−3(x̄T2 d2)2−2d1x̄
T
2 d2

‖x2‖

]
x̄2 + 2

d1+x̄T2 d2

‖x2‖ d2

 if d ∈ TK◦(x)c.

Case (vi): x ∈ (K ∪ K◦)c. We have

Π
′′

K(x; d,w) =

1

2


w1 + x̄T2 w2 +

‖d2‖2−(x̄T2 d2)2

‖x2‖[
w1 − x1

‖x2‖ x̄
T
2 w2 − x1

‖x2‖2
(
‖d2‖2 − 3(x̄T2 d2)2

)
− 2d1

x̄T2 d2

‖x2‖

]
x̄2

+2
‖x2‖d1−x1x̄

T
2 d2

‖x2‖2 d2 +
[
1 + x1

‖x2‖

]
w2

 .

Proof. By (5) and (6), the projection operator ΠK is the SOC function f soc with
f(t) := t+. Applying Lemmas 3.1 and 3.2 will give the parabolic second-order direc-
tional differentiability of ΠK in the Hadamard sense and a formula for Π

′′

K. However,
in some cases the formula obtained will still involve the plus operator (·)+. In this
theorem we aim at obtaining the exact formula as proposed. For some cases, e.g.,
in the cases in which x ∈ intK; x ∈ intK◦; x = 0, d ∈ intK; x = 0, d ∈ intK◦;
x = 0, d = 0, we can prove the results by directly using the definition of the second-
order directional derivative. In some other cases, e.g., in the cases in which x = 0,
d ∈ bdK\{0}; x = 0, d ∈ bdK◦\{0}; x ∈ bdK\{0}, d ∈ bdTK(x); x ∈ bdK◦\{0},
d ∈ bdTK◦(x), we can further use the representation of tangent cones in Lemmas 3.3
and 3.4 to obtain the proposed exact formula. For simplicity, we only prove some of
the cases. The others can be obtained by following similar arguments.

The case in which x ∈ intK. In this case ΠK(x) = x, Π′K(x; d) = d, and ΠK(x +
td+ 1

2 t
2w) = x+ td+ 1

2 t
2w for t > 0 sufficiently small. Hence

Π
′′

K(x; d,w) := lim
t↓0

Π(x+ td+ 1
2 t

2w)−ΠK(x)− tΠ′K(x; d)
1
2 t

2
= w.

The case in which x = 0 and d ∈ intK. In this case ΠK(x) = 0 and Π′K(x; d) = d.
Note that

ΠK

(
x+ td+

1

2
t2w

)
= ΠK

(
td+

1

2
t2w

)
= td+

1

2
t2w

for t > 0 sufficiently small. Hence Π
′′

K(x; d,w) = w.

The case in which x = 0 and d = 0. It is obvious that ΠK(0) = 0, Π′K(0; 0) = 0,

and ΠK(x+ td+ 1
2 t

2w) = ΠK( 1
2 t

2w) = 1
2 t

2ΠK(w). Hence Π
′′

K(x; d,w) = ΠK(w).

The case in which x = 0 and d ∈ bdK\{0}. Then ΠK(x) = 0 and d1 = ‖d2‖ 6= 0.
Directly applying Lemmas 3.1(ii) and 3.2 yield

(7) Π
′′

K(x; d,w) =
1

2
(w1− d̄T2 w2)+

(
1
−d̄2

)
+

1

2
(w1 + d̄T2 w2)

(
1
d̄2

)
+

(
0

(I − d̄2d̄
T
2 )w2

)
.
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Recall from Lemma 3.3 that w ∈ TK(d) if and only if w1 ≥ d̄T2 w2. It follows from (7)
that

Π
′′

K(x; d,w) =


w if w ∈ TK(d),

1

2

(
w1 + d̄T2 w2

2w2 + (w1 − d̄T2 w2)d̄2

)
if w 6∈ TK(d).

The case in which x ∈ bdK\{0} and d ∈ bdTK(x). Then x1 = ‖x2‖ 6= 0 and
−d1 + x̄T2 d2 = 0. Directly applying Lemmas 3.1(iii) and 3.2 yield

Π
′′

K(x; d,w) =
1

2

(
w1 −

[
x̄T2 w2 +

‖d2‖2 − d2
1

‖x2‖

])
+

(
1
−x̄2

)
(8)

+
1

2

 w1 + x̄T2 w2 +
‖d2‖2−d2

1

‖x2‖(
w1 − x̄T2 w2 − ‖d2‖2−d2

1

‖x2‖

)
x̄2 + 2w2

 .

Recall from Lemma 3.3 that w ∈ T 2
K(x; d) if and only if wT2 x2 − w1x1 ≤ d2

1 − ‖d2‖2.

Hence it follows from (8) that Π
′′

K(x; d,w) = w if w ∈ T 2
K(x; d) and

Π
′′

K(x; d,w) =
1

2

 w1 + x̄T2 w2 +
‖d2‖2−d2

1

‖x2‖(
w1 − x̄T2 w2 − ‖d2‖2−d2

1

‖x2‖

)
x̄2 + 2w2


if w /∈ T 2

K(x; d).

4. Second-order tangent set for the SOC complementarity set. This
section is devoted to deriving the exact formula for the second-order tangent set to
the SOC complementarity set. To this end, we first build its connection with the
second-order directional derivative of the projection operator ΠK, whose existence is
guaranteed by virtue of Theorem 3.5.

Proposition 4.1. For any (x, y) ∈ Ω and (d,w) ∈ TΩ(x, y), one has

T i,2Ω

(
(x, y); (d,w)

)
= T 2

Ω

(
(x, y); (d,w)

)
=
{

(p, q) | Π
′′

K(x− y; d− w, p− q) = p
}
.

Proof. Since T i,2Ω ((x, y); (d,w)) ⊆ T 2
Ω((x, y); (d,w)), it suffices to show

T 2
Ω

(
(x, y); (d,w)

)
⊆ Υ

(
(x, y); (d,w)

)
⊆ T i,2Ω

(
(x, y); (d,w)

)
,

where
Υ
(
(x, y); (d,w)

)
:=
{

(p, q) | Π
′′

K(x− y; d− w, p− q) = p
}
.

Let (p, q) ∈ T 2
Ω((x, y); (d,w)). Then by definition, there exist tn ↓ 0, (α(tn), β(tn)) =

o(t2n) such that (x, y) + tn(d,w) + 1
2 t

2
n(p, q) + (α(tn), β(tn)) ∈ Ω. By the equivalence

in (2), it follows that

ΠK

(
x− y + tn(d− w) +

1

2
t2n(p− q) + α(tn)− β(tn)

)
= x+ tnd+

1

2
t2np+ α(tn)

= ΠK(x− y) + tnΠ′K(x− y; d− w) +
1

2
t2np+ α(tn),

where the last equality follows from the equivalences in (2) and (3). Therefore,
Π
′′

K(x− y; d− w, p− q) = p, i.e., (p, q) ∈ Υ
(
(x, y); (d,w)

)
.
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Now, take (p, q) ∈ Υ((x, y); (d,w)), i.e., Π
′′

K(x − y; d − w, p − q) = p. For t > 0,
define

r(t) := ΠK

(
x− y + t(d− w) +

1

2
t2(p− q)

)
−ΠK(x− y)− tΠ′K(x− y; d− w)

− 1

2
t2Π

′′

K(x− y; d− w, p− q).

Then r(t) = o(t2) according to the second-order directional differentiability of ΠK by
Theorem 3.5. Note that

ΠK

(
x− y + t(d− w) +

1

2
t2p+ r(t)− 1

2
t2q − r(t)

)
= ΠK

(
x− y + t(d− w) +

1

2
t2(p− q)

)
= ΠK(x− y) + tΠ′K(x− y; d− w) +

1

2
t2Π

′′

K(x− y; d− w, p− q) + r(t)

= x+ td+
1

2
t2p+ r(t),

where the last equality follows from the equivalences in (2) and (3). This together
with equivalence (2) yields that(

x+ td+
1

2
t2p+ r(t), y + tw +

1

2
t2q + r(t)

)
∈ Ω.

This means that (p, q) ∈ T i,2Ω

(
(x, y); (d,w)

)
. The proof is complete.

Remark 4.1. The proof of equivalence (4) in Proposition 4.1 is very similar to that
of equivalence (3) in [21, Proposition 5.2]. Note that although the equivalence (3) was
shown in [15, Proposition 3.1], the proof in [21, Proposition 5.2] is much more concise
without going over each possible case, as in [15, Proposition 3.1]. Moreover, from the
proof of [21, Proposition 5.2], one can see that the equivalence (3) can be extended
to other convex cones K as long as the projection operator ΠK satisfies directional
differentiability. Similarly, from the proof of Proposition 4.1, we can see that equiv-
alence (4) in Proposition 4.1 can be extended to other convex cones K whenever the
projection operator ΠK satisfies parabolic second-order directional differentiability in
the Hadamard sense.

The above result tells us that for characterizing the structure of the second-order
tangent set to Ω, we need to study the expression of the second-order directional
derivative of the projection operator ΠK, which has been obtained in Theorem 3.5.
With these preparations, the explicit expression of the second-order tangent set to Ω
is given below. For convenience, we recall the formula for the tangent cone first.

Lemma 4.2 (see [21, Theorem 5.1]). For any (x, y) ∈ Ω,

T iΩ(x, y) = TΩ(x, y)

=


(d,w)

∣∣∣∣∣∣∣∣∣∣∣∣

d ∈ Rm, w = 0 if x ∈ intK, y = 0;
d = 0, w ∈ Rm if x = 0, y ∈ intK;
x1ŵ − y1d ∈ Rx, d ⊥ y, w ⊥ x if x, y ∈ bdK\{0};
d ∈ TK(x), w = 0 or d ⊥ x̂, w ∈ R+x̂ if x ∈ bdK\{0}, y = 0;
d = 0, w ∈ TK(y) or d ∈ R+ŷ, w ⊥ ŷ if x = 0, y ∈ bdK\{0};
d ∈ K, w ∈ K, d ⊥ w if x = 0, y = 0


.
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According to Proposition 4.1 and Lemma 4.2, we obtain the following result.

Theorem 4.3. The set Ω is second-order directionally differentiable at (x, y) ∈ Ω
in direction (d,w) ∈ TΩ(x, y).

Remark 4.2. It is well known that for a convex set, the tangent cone and inner
tangent cone coincide, but the inner and outer second-order tangent sets can be
different; see [4, Example 3.31]. Here we show that the SOC complementarity set Ω,
although it is nonconvex, is second-order directionally differentiable, i.e., the tangent
cone and inner tangent cone coincide, and the inner and outer second-order tangent
sets coincide as well.

The inner and outer second-order tangent sets to product sets have been studied
in [4, Page 168]. In particular, for C := C1 × · · · × Cm with Ci ∈ Rni , at certain
x = (x1, . . . , xm) with xi ∈ Ci, according to [4],

T i,2C (x; d) = T i,2C1
(x1; d1)× · · · × T i,2Cm(xm; dm)

and

(9) T 2
C(x; d) ⊂ T 2

C1
(x1; d1)× · · · × T 2

Cm(xm; dm).

If all except at most one of Ci are second-order directionally differentiable, then
the equality holds in (9). Noting that the second-order cone complementarity set is
second-order directionally differentiable, Theorem 4.3 can then be extended to the
Cartesian product of finitely many second-order cone complementarity sets.

Corollary 4.4. Suppose Ω1, . . . ,Ωl are all SOC complementarity sets. Then the
Cartesian product Ω := Ω1 ×Ω2 × · · · ×Ωl is second-order directionally differentiable
at every (x, y) ∈ Ω in every direction (d,w) ∈ TΩ(x, y) and

T 2
Ω((x, y); (d,w)) = T 2

Ω1
((x1, y1); (d1, w1))× · · · × T 2

Ωl
((xl, yl); (dl, wl)).

Proof. Since

(d,w) ∈ TΩ(x, y) = TΩ1
(x1, y1)× · · · × TΩl(xl, yl),

(di, wi) ∈ TΩi(xi, yi) for i = 1, . . . , l. Take (p, q) ∈ T 2
Ω((x, y); (d,w)). Hence

T 2
Ω((x, y); (d,w)) ⊆ T 2

Ω1
((x1, y1); (d1, w1))× · · · × T 2

Ωl
((xl, yl); (dl, wl))

= T i,2Ω1
((x1, y1); (d1, w1))× · · · × T i,2Ωl

((xl, yl); (dl, wl))

= T i,2Ω ((x, y); (d,w)),

where the first inclusion and the second equation follows from [4, Page 168], and the
first equation comes from Theorem 4.3.

Theorem 4.5. For any (x, y) ∈ Ω and (d,w) ∈ TΩ(x, y), the formula of the
second-order tangent set for the SOC complementarity set can be described as in the
following six cases.

Case (i): x ∈ intK and y = 0. We have T 2
Ω

(
(x, y); (d,w)

)
= Rm × {0}.

Case (ii): x = 0 and y ∈ intK. We have T 2
Ω

(
(x, y); (d,w)

)
= {0} × Rm.

Case (iii): x, y ∈ bdK\{0}. We have

T 2
Ω

(
(x, y); (d,w)

)
=

{
(p, q)

∣∣∣∣∣ p ∈ bdT 2
K(x; d), q ∈ bdT 2

K(y;w),

(x1w1 − y1d1)
(
w2−w1ȳ2

y1
− d2−d1x̄2

x1

)
− p1y2 − q1x2 = x1q2 + y1p2

}
.
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Case (iv): x ∈ bdK\{0} and y = 0. We have

T 2
Ω

(
(x, y); (d,w)

)

=


(p, q)

∣∣∣∣∣∣∣∣∣∣∣

q = 0, if d ∈ intTK(x), w = 0;

p ∈ T 2
K(x; d), q = 0, or p ∈ bdT 2

K(x; d), q ∈ R+x̂

if d ∈ bdTK(x), w = 0;

p ∈ bdT 2
K(x; d), −q1x̄2 − 2w1d2

‖x2‖ − 2d1w2

‖x2‖ = q2,

if d ⊥ x̂, w ∈ R++x̂


.

Case (v): x = 0 and y ∈ bdK\{0}. We have

T 2
Ω

(
(x, y); (d,w)

)

=


(p, q)

∣∣∣∣∣∣∣∣∣∣∣

p = 0, if d = 0, w ∈ intTK(y);

p = 0, q ∈ T 2
K(y;w), or p ∈ R+ŷ, q ∈ bdT 2

K(y;w)

if d = 0, w ∈ bdTK(y);

q ∈ bdT 2
K(y;w), −p1ȳ2 − 2w1d2

‖y2‖ − 2d1w2

‖y2‖ = p2,

if d ∈ R++ŷ, w ⊥ ŷ


.

Case (vi): x = y = 0. We have T 2
Ω

(
(x, y); (d,w)

)
= TΩ(d,w).

Proof. By Proposition 4.1, to describe an element (p, q) ∈ T 2
Ω((x, y); (d,w)), it

suffices to describe an element (p, q) satisfying Π
′′

K(x − y; d − w, p − q) = p. For
simplicity, we define z := x− y, ξ := d− w, and η := p− q.

Case (i): x ∈ intK and y = 0. Since z = x − y ∈ intK, by Theorem 3.5(i), we
have Π

′′

K(x− y; d− w, p− q) = p− q. It follows that

Π
′′

K(x− y; d− w, p− q) = p⇐⇒ q = 0.

Hence T 2
Ω

(
(x, y); (d,w)

)
= Rm × {0}.

Case (ii): x = 0 and y ∈ intK. Since z = x− y ∈ −intK, by Theorem 3.5(ii), we
know that Π

′′

K(z; d− w, p− q) = 0. It follows that

Π
′′

K(x− y; d− w, p− q) = p⇐⇒ p = 0.

Hence T 2
Ω

(
(x, y); (d,w)

)
= {0} × Rm.

Case (iii): x, y ∈ bdK\{0} and xT y = 0. In this case x1 = ‖x2‖ 6= 0 and by
Lemma 2.5,

(10) z = x− y = (x1, x2)− k(x1,−x2) = ((1− k)x1, (1 + k)x2), k = y1/x1.

This yields z1 +‖z2‖ = 2x1 > 0 and z1−‖z2‖ = −2kx1 < 0, i.e., z ∈ (K∪K◦)c. Then
by Theorem 3.5(vi), Π

′′

K(z; ξ, η) = p, where p = (p1, p2) ∈ R× Rm−1 if and only if

p1 =
1

2

(
η1 + z̄T2 η2 +

‖ξ2‖2 − (z̄T2 ξ2)2

‖z2‖

)
,(11)

p2 =
1

2

(
η1 −

z1

‖z2‖
z̄T2 η2 −

z1

‖z2‖2
[
‖ξ2‖2 − 3(z̄T2 ξ2)2

]
− 2ξ1

z̄T2 ξ2
‖z2‖

)
z̄2

+
‖z2‖ξ1 − z1z̄

T
2 ξ2

‖z2‖2
ξ2 +

1

2

(
1 +

z1

‖z2‖

)
η2.(12)
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We now try to derive equivalent expressions for (11) and (12). Since (d,w) ∈
TΩ(x, y), according to Lemma 4.2, x ⊥ w, y ⊥ d, and there exists β ∈ R such that
x1ŵ − y1d = βx, from which and also from x1 = ‖x2‖ 6= 0 we have

(13) w1 = kd1 + β, w2 = −kd2 − βx̄2,

and

(14) x̄T2 w2 = −w1, x̄T2 d2 = d1.

Note that z̄2 = x̄2 by (10). Hence it follows from (13) and (14) that

z̄T2 ξ2 = x̄T2 (d2 − w2) = d1 + w1 = (1 + k)d1 + β,(15)

‖ξ2‖2 = ‖d2 − w2‖2 = ‖(1 + k)d2 + βx̄2‖2

= (k + 1)2‖d2‖2 + 2β(k + 1)d1 + β2,

ξ1 = d1 − w1 = (1− k)d1 − β.(16)

Hence (11) can be rewritten as

(17) p1 = −q1 + x̄T2 (p2 − q2) +
x1 + y1

x2
1

(
‖d2‖2 − d2

1

)
.

The term in front of z̄2 in (12) becomes

1

2

(
η1 −

z1

‖z2‖
z̄T2 η2 −

z1

‖z2‖2
[
‖ξ2‖2 − 3(z̄T2 ξ2)2

]
− 2ξ1

z̄T2 ξ2
‖z2‖

)
=

1

2

(
η1 + z̄T2 η2 +

‖ξ2‖2 − (z̄T2 ξ2)2

‖z2‖

)
− z1 + ‖z2‖

2‖z2‖
z̄T2 η2

+
z1 + ‖z2‖

2‖z2‖2
[
(z̄T2 ξ2)2 − ‖ξ2‖2

]
+

[
z1

‖z2‖2
(
z̄T2 ξ2

)2 − ξ1
‖z2‖

(
z̄T2 ξ2

)]
=
y1p1 − x1q1

x1 + y1
+

[
x1 − y1

(x1 + y1)2
(d1 + w1)2 − 1

x1 + y1
(d2

1 − w2
1)

]
=
y1p1 − x1q1

x1 + y1
+ 2

x1w
2
1 + x1d1w1 − y1d

2
1 − y1d1w1

(x1 + y1)2
,

where the second equality uses (10), (11), and (15)–(17). It follows from (15) and
(16) that the term in front of ξ2 in (12) is

ξ1
‖z2‖

− z1

‖z2‖
z̄T2 ξ2
‖z2‖

=
1

x1 + y1

(
d1 − w1

)
− x1 − y1

(x1 + y1)2

(
d1 + w1

)
= 2

y1d1 − x1w1

(x1 + y1)2
.

The term in front of η2 in (12) is 1/2
(
1 + (z1/‖z2‖)

)
= x1/(x1 + y1). Hence (12) can

be rewritten as

p2 =

(
y1p1 − x1q1

x1 + y1
+ 2

x1w
2
1 + x1d1w1 − y1d

2
1 − y1d1w1

(x1 + y1)2

)
x̄2

+ 2
y1d1 − x1w1

(x1 + y1)2
(d2 − w2) +

x1

x1 + y1
(p2 − q2).(18)
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Further notice that (y1p1 − x1q1)x̄2 = −p1y2 − q1x2 and

2
y1d1 − x1w1

(x1 + y1)2
(d2 − w2) + 2

x1w
2
1 + x1d1w1 − y1d

2
1 − y1d1w1

(x1 + y1)2
x̄2

= 2
−x1β

(x1 + y1)2
[(1 + k)d2 + βx̄2] + 2

x1β
2 + y1d1β + x1d1β

(x1 + y1)2
x̄2

= 2
β

x1 + y1

(
−d2 + d1x̄2

)
= 2

x1w1 − y1d1

x1(x1 + y1)

(
−d2 + d1x̄2

)
,

where the first and third equations use (13) and the fact that y1 = kx1. Hence (18)
can be rewritten as

y1p2 + x1q2 = 2
x1w1 − y1d1

x1
(−d2 + d1x̄2)− p1y2 − q1x2

= (x1w1 − y1d1)

(
w2 − w1ȳ2

y1
+
−d2 + d1x̄2

x1

)
− p1y2 − q1x2,(19)

where the second step comes from the fact that (−d2 + d1x̄2)/x1 = (w2 − w1ȳ2)/y1

due to (13). Hence (11) and (12) are equivalent to (17) and (19).
Now, multiplying (19) by x̄T2 and using (14) yields

(20) x1x̄
T
2 q2 + y1x̄

T
2 p2 = y1p1 − x1q1.

Hence it follows from (17) and (20) that

p1 =

(
1 +

y1

x1

)
x̄T2 p2 −

y1

x1
p1 +

x1 + y1

x2
1

(
‖d2‖2 − d2

1

)
,

that is,

(21) p1 = x̄T2 p2 +
1

x1

(
‖d2‖2 − d2

1

)
⇐⇒ p ∈ bdT 2

K(x; d).

Since d1 = (w1 − β)/k, d2 = −(w2 + βx̄2)/k by (13), and wT2 x̄2 = −w1 by (14), we
see that

(22)
‖d2‖2 − d2

1

x2
1

=
‖w2‖2 − w2

1

y2
1

.

Similarly, it follows from (17), (20), (22), and x̄2 = −ȳ2 that

q1 = −x1

y1
q1 +

(
1 +

x1

y1

)
ȳT2 q2 +

x1 + y1

y2
1

(
‖w2‖2 − w2

1

)
,

that is,

(23)
1

y1

(
‖w2‖2 − w2

1

)
= q1 − ȳT2 q2 ⇐⇒ q ∈ bdT 2

K(y;w).

Hence, along the line{
(11),
(12)

⇐⇒
{

(17),
(19)

⇐⇒
{

(21), (23),
(19),

the desired result follows.
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Case (iv): x ∈ bdK\{0} and y = 0. In this case z = x− y = x ∈ bdK\{0}.
Case (iv-1): d ∈ intTK(x) and w = 0. Then ξ = d − w = d ∈ intTK(x). Hence

Π
′′

K(z; ξ, η) = η by Theorem 3.5(iv). It follows that Π
′′

K(x− y; d−w, p− q) = p if and
only if q = 0.

Case (iv-2): d ∈ bdTK(x) and w = 0. Then ξ = d ∈ bdTK(x). Hence Π
′′

K(z; ξ, η) =

Π
′′

K(x; d, η) and, by Theorem 3.5(iv),

Π
′′

K(x; d, η)

=


η if η ∈ T 2

K(x; d),

1

2

 η1 + x̄T2 η2 +
‖d2‖2−d2

1

‖x2‖(
η1 − x̄T2 η2 − ‖d2‖2−d2

1

‖x2‖

)
x̄2 + 2η2

 if η /∈ T 2
K(x; d).

Note that η ∈ T 2
K(x; d) ⇐⇒ ηT2 x2 − η1x1 ≤ d2

1 − ‖d2‖2 by Lemma 3.3. Hence

Π
′′

K(x; d, p − q) = p if and only if either p − q ∈ T 2
K(x; d) and q = 0 or the following

system holds: 
η1 − x̄T2 η2 − ‖d2‖2−d2

1

‖x2‖ < 0,

1
2

(
η1 +

[
x̄T2 η2 +

‖d2‖2−d2
1

‖x2‖

])
= p1,

1
2

(
η1 −

[
x̄T2 η2 +

‖d2‖2−d2
1

‖x2‖

])
x̄2 + η2 = p2.

(24)

We now further simplify the system (24):

(24)⇐⇒


η1 −

[
x̄T2 η2 +

‖d2‖2−d2
1

‖x2‖

]
< 0,

x̄T2 η2 +
‖d2‖2−d2

1

‖x2‖ = p1 + q1,
1
2

(
η1 − p1 − q1

)
x̄2 = q2

⇐⇒


η1 −

[
x̄T2 η2 +

‖d2‖2−d2
1

‖x2‖

]
< 0,

x̄T2 p2 − x̄T2 q2 +
‖d2‖2−d2

1

‖x2‖ = p1 + q1,

−q1x̄2 = q2

⇐⇒


η1 −

[
x̄T2 η2 +

‖d2‖2−d2
1

‖x2‖

]
< 0,

x̄T2 p2 +
‖d2‖2−d2

1

‖x2‖ = p1,

−q1x̄2 = q2

⇐⇒


q1 > 0,

x̄T2 p2 +
‖d2‖2−d2

1

‖x2‖ = p1,

−q1x̄2 = q2

⇐⇒
{
q ∈ R++x̂,

p ∈ bdT 2
K(x; d).

Hence either p ∈ T 2
K(x; d) and q = 0 or q ∈ R++x̂ and p ∈ bdT 2

K(x; d).

Case (iv-3): d ⊥ x̂ and w ∈ R++x̂. Then x̄T2 d2 = d1 and x̄T2 w2 = −w1. Hence

(25) ξ1 − x̄T2 ξ2 = d1 − w1 − x̄T2 (d2 − w2) = −2w1 < 0,

which implies ξ ∈ TK(x)c by Lemma 3.3. Thus by Theorem 3.5(iv), Π
′′

K(z; ξ, η) = p
takes the form

(26)


1
2

(
η1 + x̄T2 η2 +

‖ξ2‖2−(x̄T2 ξ2)2

‖x2‖

)
= p1,

1
2

(
η1 − x̄T2 η2 − ‖ξ2‖

2−3(x̄T2 ξ2)2+2ξ1x̄
T
2 ξ2

‖x2‖

)
x̄2 + η2 +

ξ1−x̄T2 ξ2
‖x2‖ ξ2 = p2.

Note that

ξ1x̄
T
2 ξ2 − (x̄T2 ξ2)2 = (ξ1 − x̄T2 ξ2)x̄T2 ξ2 = −2w1(d1 + w1),

‖ξ2‖2 − (x̄T2 ξ2)2 = ‖d2 − w2‖2 − (d1 + w1)2 = ‖d2‖2 − d2
1,
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where we have used the fact that d ⊥ w and w2 = −w1x̄2 due to d ⊥ x̂ and w ∈ R++x̂.
Therefore

‖ξ2‖2 − 3(x̄T2 ξ2)2 + 2ξ1x̄
T
2 ξ2

‖x2‖
=
‖ξ2‖2 − (x̄T2 ξ2)2

‖x2‖
+ 2

ξ1x̄
T
2 ξ2 − (x̄T2 ξ2)2

‖x2‖

=
‖d2‖2 − d2

1

‖x2‖
− 4

w1(d1 + w1)

‖x2‖
.(27)

Putting (25) and (27) into (26) yields

Π
′′

K(z; ξ, η) = p

⇐⇒


1
2

(
η1 + x̄T2 η2 +

‖d2‖2−d2
1

‖x2‖

)
= p1,(

1
2η1 − 1

2

[
x̄T2 η2 +

‖d2‖2−d2
1

‖x2‖

]
+ 2 w1

‖x2‖ (d1 + w1)
)
x̄2 − 2 w1

‖x2‖ (d2 − w2) = q2

⇐⇒


1
2

(
η1 + x̄T2 η2 +

‖d2‖2−d2
1

‖x2‖

)
= p1,(

−q1 + 2 w1

‖x2‖ (d1 + w1)
)
x̄2 − 2 w1

‖x2‖ (d2 − w2) = q2

⇐⇒

 1
2

(
η1 + x̄T2 η2 +

‖d2‖2−d2
1

‖x2‖

)
= p1,

−q1x̄2 − 2d1w2

‖x2‖ − 2w1d2

‖x2‖ = q2

⇐⇒

 x̄T2 p2 +
‖d2‖2−d2

1

‖x2‖ = p1,

−q1x̄2 − 2w1d2

‖x2‖ − 2d1w2

‖x2‖ = q2.

Here the third equivalence uses the fact that w2 = −w1x̄2 due to w ∈ R++x̂ and the
last step follows from substituting the expression for q2 in the second equation into
the first one to obtain

x̄T2 q2 = x̄T2

(
−q1x̄2 − 2

w1d2

‖x2‖
− 2

d1w2

‖x2‖

)
= −q1.

The desired result follows by noting that p ∈ bdT 2
K(x; d) if and only if x̄T2 p2 +

‖d2‖2−d2
1

‖x2‖ = p1 by virtue of Lemma 3.3.

Case (v): x = 0 and y ∈ bdK\{0}. The proof is omitted, since this case is
symmetric to Case (iv).

Case (vi): x = 0 and y = 0. Since Ω is a cone, according to the definition of the
second-order tangent set, we have

T 2
Ω

(
(0, 0); (d,w)

)
= TΩ(d,w).

From all the above, the proof is complete.

5. Second-order optimality conditions for SOCMPCC. In this section, as
an application of the second-order tangent set for the SOC complementarity set, we
consider second-order optimality conditions for the mathematical programming with
second-order cone complementarity constraints (SOCMPCC):

(28) min f(x) s.t. K 3 G(x) ⊥ H(x) ∈ K,

where f : Rn → R and G,H : Rn → Rm are second-order continuously differentiable.
For simplicity, we restrict our attention to the simpler case, i.e., K is a m-dimensional
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second-order cone. All analysis can be easily carried over to more general cases where
K is a Cartesian product of some second-order cones. SOCMPCC is an important
class of optimization problems that has many applications. We refer the reader to
[19, 21] and references therein for applications and the first-order necessary optimality
conditions.

Define F (x) := (G(x), H(x)). Then SOCMPCC (28) can be rewritten as

(29) min f(x) s.t. F (x) ∈ Ω.

For a convex set-constrained optimization problem in the form of (29), where Ω is
replaced by a convex closed set K (see [4, formula (3.93)]), second-order optimality
conditions that involve the second-order tangent set to K have been developed (see,
e.g., [2, 4]). In particular, when the convex set K is not polyhedral, the second-order
tangent set to K is needed in the second-order optimality conditions. However, if the
set Ω in problem (29) is nonconvex, these optimality conditions are not applicable
in general. In what follows, we will establish the second-order optimality conditions
for the SOCMPCC, which is not a convex set-constrained optimization problem. We
would like to emphasize that, even if the second-order cone complementarity set is
nonconvex, its tangent cone and second-order tangent set have nice properties so
that some of the theories in the second-order optimality conditions for a convex set-
constrained optimization problem still hold. This observation relies heavily on the
exact formulas for the tangent cone and second-order tangent set established in the
previous section.

First we present some results needed for further analysis. Recall that the regular
tangent cone is always convex. The following result shows that the regular tangent
cone to the SOC complementarity set Ω is not only convex but is a subspace.

Proposition 5.1. For any (x, y) ∈ Ω,

T̂Ω(x, y) = linTΩ(x, y)

=


(d,w)

∣∣∣∣∣∣∣∣∣∣∣∣

d ∈ Rm, w = 0 if x ∈ intK, y = 0;
d = 0, w ∈ Rm if x = 0, y ∈ intK;
x1ŵ − y1d ∈ Rx, d ⊥ y, w ⊥ x if x, y ∈ bdK\{0};
d ⊥ x̂, w = 0 if x ∈ bdK\{0}, y = 0;
d = 0, w ⊥ ŷ if x = 0, y ∈ bdK\{0};
d = 0, w = 0 if x = 0, y = 0


.

Proof. The formula of linTΩ(x, y) is clear from that of TΩ(x, y) in Lemma 4.2. Ac-
cording to the tangent-normal polarity as in Lemma 2.4, we can obtain the formula
of T̂Ω(x, y) by taking the polar of the limiting normal cone to Ω given in [20, Theo-

rem 5.1]. The obtained formula of linTΩ(x, y) and T̂Ω(x, y) shows that they have the
same expression.

The exact formulas established in Theorem 4.5 and Proposition 5.1 immediately
imply the following results.

Corollary 5.2. For (x, y) ∈ Ω, TΩ(x, y) + T̂Ω(x, y) = TΩ(x, y).

Proposition 5.3. For (x, y) ∈ Ω and (d,w) ∈ TΩ(x, y),

T 2
Ω

(
(x, y); (d,w)

)
+ T̂Ω(x, y) = T 2

Ω

(
(x, y); (d,w)

)
.

Proof. The inclusion “⊇” is clear, since (0, 0) ∈ T̂Ω(x, y). For all cases except
where x, y ∈ bdK\{0}, it is easy to see that “⊆” can be achieved by using the formula
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of T 2
Ω

(
(x, y); (d,w)

)
given in Theorem 4.5 and the formula of T̂Ω(x, y) given in Propo-

sition 5.1. Now consider the case where x, y ∈ bdK\{0}. Let (p, q) ∈ T 2
Ω((x, y); (d,w))

and (u, v) ∈ T̂Ω(x, y). Since p ∈ bdT 2
K(x; d), we have x̂T p = ‖d2‖2−d2

1 by Lemma 3.3.
Hence x̂T (p + u) = x̂T p + x̂Tu = ‖d2‖2 − d2

1 due to the fact that u ⊥ x̂ (since u ⊥ y
by Proposition 5.1 and y ∈ R++x̂). This means p+u ∈ bdT 2

K(x; d). Similarly, we can
obtain q + v ∈ bdT 2

K(y;w). Since (u, v) ∈ T̂Ω(x, y), it follows from Proposition 5.1
that there exists τ ∈ R such that x1v̂ − y1u = τx. Thus

(30) x1v2 + y1u2 = −τx2 = −x1v1 − y1u1

x1
x2 = −v1x2 − u1y2,

where the last step comes from Lemma 2.5. Since we have x, y ∈ bdK\{0} and
(p, q) ∈ T 2

Ω((x, y); (d,w)), it follows from Theorem 4.5 that

(31) (p, q) ∈ T 2
Ω

(
(x, y); (d,w)

)
⇐⇒

{
p ∈ bdT 2

K(x; d), q ∈ bdT 2
K(y;w),

ξ − p1y2 − q1x2 = x1q2 + y1p2,

where

ξ := (x1w1 − y1d1)

(
w2 − w1ȳ2

y1
− d2 − d1x̄2

x1

)
.

This, together with (30), implies

x1(q2 + v2) + y1(p2 + u2) = x1q2 + y1p2 − v1x2 − u1y2

= ξ − p1y2 − q1x2 − v1x2 − u1y2

= ξ − (p1 + u1)y2 − (q1 + v1)x2.

Hence together with p + u ∈ bdT 2
K(x; d) and q + v ∈ bdT 2

K(y;w), we have that
(p+ u, q + v) ∈ T 2

Ω((x, y); (d,w)) by virtue of (31).

With these preparations, we are now ready to develop a second-order necessary
optimality condition for SOCMPCC. Define the Lagrange function as L(x, λ) :=
f(x) + 〈F (x), λ〉 and define the following three multiplier sets:

Λc(x∗) := {λ | ∇xL(x∗, λ) = 0, λ ∈ N c
Ω(F (x∗))},

Λ(x∗) := {λ | ∇xL(x∗, λ) = 0, λ ∈ NΩ(F (x∗))},
ΛF (x∗) := {λ | ∇xL(x∗, λ) = 0, λ ∈ N̂Ω(F (x∗))}.

Denote by C(x∗) :=
{
d | ∇f(x∗)d ≤ 0, ∇F (x∗)d ∈ TΩ(F (x∗))

}
the critical cone.

Note that if there exists λ ∈ ΛF (x∗), then

C(x∗) =
{
d | ∇f(x∗)d = 0, ∇F (x∗)d ∈ TΩ(F (x∗))

}
.

Theorem 5.4. Let x∗ be a locally optimal solution of SOCMPCC. Suppose that
the nondegeneracy condition

(32) ∇F (x∗)Rn + linTΩ(F (x∗)) = R2m

holds. Then Λc(x∗) = Λ(x∗) = ΛF (x∗) = {λ0} and

∇2
xxL(x∗, λ0)(d, d)− σ

(
λ0|T 2

Ω(F (x∗);∇F (x∗)d)
)
≥ 0 ∀d ∈ C(x∗).
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Proof. Step 1. We prove Λc(x∗) = Λ(x∗) = ΛF (x∗) = {λ0}. Since ∇F (x∗)Rn +

linTΩ(F (x∗)) = ∇F (x∗)Rn + T̂Ω(F (x∗)) = R2m, taking the polar on both sides of the
above equation, by the rule for polar cones [18, Corollary 11.25] and the fact that

(T̂Ω)◦ = N c
Ω, we have

(33) ∇F (x∗)Tλ = 0, λ ∈ N c
Ω(F (x∗)) =⇒ λ = 0.

Suppose that λ1, λ2 ∈ Λc(x∗). Then λ1 − λ2 satisfies ∇F (x∗)T (λ1 − λ2) = 0 and

λ1 − λ2 ∈ N c
Ω(F (x∗)) since N c

Ω(F (x)) is a subspace (because T̂Ω(x, y) is a subspace

and N c
Ω = (T̂Ω)◦). Thus λ1 = λ2 by (33). This means that Λc(x∗) is a singleton.

Since ΛF (x∗) ⊆ Λ(x∗) ⊆ Λc(x∗), it remains to show that ΛF (x∗) is nonempty. Since
NΩ ⊆ N c

Ω, condition (33) ensures that

(34) ∇F (x∗)Tλ = 0, λ ∈ NΩ(F (x∗)) =⇒ λ = 0,

which in turn implies that the system F (x)−Ω is metrically regular at (x∗, 0). Thus,

according to [12, Theorem 4], Proposition 5.1, and Corollary 5.2, we have N̂S(x) =

∇F (x)T N̂Ω(F (x)), where S := {x | F (x) ∈ Ω}. As x∗ is a local optimal solution

of problem (29), we have 0 ∈ ∇f(x∗)T + N̂S(x∗) = ∇f(x∗)T +∇F (x∗)T N̂Ω(F (x∗)),
which indicates that ΛF (x∗) is nonempty. Hence Λc(x∗),Λ(x∗),ΛF (x∗) are all single-
tons and coincide with each other. Let us denote the unique element by λ0.

Step 2. We show that for all d ∈ C(x∗) and for any convex subset T (d) in
T 2

Ω(F (x∗);∇F (x∗)d), ∇2
xxL(x∗, λ0)(d, d) − σ(λ0|T (d)) ≥ 0. The idea of the proof is

inspired by the arguments in [2, Theorem 3.1] and using the properties of the tangent
cone and second-order tangent set discussed above. For the sake of completeness, we
give the detailed proof here. Consider the set Γ(d) := cl{T (d) + T̂Ω(F (x∗))}. Since
the regular tangent cone is convex, the set Γ(d) is closed and convex. Moreover, it
follows from Proposition 5.3 and the fact the second-order tangent set is closed that
Γ(d) ⊆ T 2

Ω(F (x∗);∇F (x∗)d). Because x∗ is a locally optimal solution of problem (29),
by definition of the second-order tangent cone, we can show that

∇f(x∗)w +∇2f(x∗)(d, d) ≥ 0 ∀d ∈ C(x∗), w ∈ T 2
S

(
x∗; d

)
.

Since (34) holds, by [18, Proposition 13.13], the chain rule for tangent sets (1) holds
with Θ taken as Ω. It follows that for all d ∈ C(x∗), the optimization problem{

min
w

∇f(x∗)w +∇2f(x∗)(d, d)

s.t. ∇F (x∗)w +∇2F (x∗)(d, d) ∈ T 2
Ω

(
F (x∗);∇F (x∗)d

)
has nonnegative optimal value. Since Γ(d) ⊆ T 2

Ω(F (x∗);∇F (x∗)d), it is clear that the
convex set constrained problem

(35)

{
min
w

∇f(x∗)w +∇2f(x∗)(d, d)

s.t. ∇F (x∗)w +∇2F (x∗)(d, d) ∈ Γ(d)

has nonnegative optimal value as well. Since the optimization problem (35) can be
put into the form of problem [4, formula (2.291)] involving an indicator function of set
Γ(d) and the dual problem of [4, formula (2.291)] is in the form of [4, formula (2.298)],
and the conjugate function of an indicator function is the support function, the dual
problem of (35) is

max
λ

{
inf
w
L(w, λ)− σ (λ|Γ(d))

}
,
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where L(w, λ) := ∇xL(x∗, λ)w +∇2
xxL(x∗, λ)(d, d) is the Lagrange function of (35).

Note that

σ(λ|Γ(d)) = σ
(
λ|T (d) + T̂Ω(F (x∗))

)
= σ(λ|T (d)) + σ

(
λ|T̂Ω(F (x∗))

)
= +∞

whenever λ /∈ [T̂Ω(F (x))]◦ = N c
Ω(F (x)). Therefore, the dual problem of (35) is

(36) max
λ∈Λc(x∗)

{
∇2
xxL(x∗, λ)(d, d)− σ (λ|Γ(d))

}
= ∇2

xxL(x∗, λ0)(d, d)− σ (λ0|Γ(d)) ,

where the equality holds since Λc(x∗) = {λ0} by Step 1.

Since linTΩ(F (x∗)) = T̂Ω(F (x∗)) by Proposition 5.1 and linTΩ(F (x∗)) is a sub-

space, we have linTΩ(F (x∗)) = −T̂Ω(F (x∗)). Hence condition (32) is ∇F (x∗)Rn −
T̂Ω(F (x∗)) = R2m, which in turn implies ∇F (x∗)Rn −

(
T (d) + T̂Ω(F (x∗))

)
= R2m.

Hence ∇F (x̄)Rn − Γ(d) = R2m. So the Robinson’s constraint qualification (see [4,
formula (2.313)]) for problem (35) holds. It ensures that the zero dual gap property
holds (see [4, Theorem 2.165]). Hence the optimal value of the dual problem (36)
is equal to the optimal value of problem (35) and hence nonnegative. In addition,
noting that T (d) ⊆ Γ(d), σ(λ0|T (d)) ≤ σ(λ0|Γ(d)), which further implies that

(37) ∇2
xxL(x∗, λ0)(d, d)− σ (λ0|T (d)) ≥ 0.

Step 3. Note that T 2
Ω(F (x∗);∇F (x∗)d) =

⋃
a∈T 2

Ω(F (x∗);∇F (x∗)d){a} is the union of

convex sets. For each a ∈ T 2
Ω(F (x∗);∇F (x∗)d), by (37) we have

∇2
xxL(x∗, λ0)(d, d)− 〈λ0, a〉 ≥ 0.

This then yields the desired result

∇2
xxL(x∗, λ0)(d, d)− σ

(
λ0|T 2

Ω(F (x∗);∇F (x∗)d)
)
≥ 0.

Remark 5.1. The nondegeneracy condition (32), together with the special geo-
metric structure of the second-order cone complementarity set, can ensure not only
the uniqueness of Lagrangian multiplier in Step 1, but also the zero-dual gap prop-
erty between (35) and (36) in Step 2. The nondegeneracy condition, stronger than
the Robinson’s constraint qualification, is a generalization of the linear independence
constraint qualification in the conic case. We refer the reader to [4, Proposition 4.75]
for a detailed discussion on the relationship between the nondegeneracy condition and
the uniqueness of multiplier in the convex case.

We next derive the exact formula for the support function of the second-order
tangent set to the SOC complementarity set needed in applying Theorem 5.4. Under
the assumption of Theorem 5.4 we have

C(x∗) =
{
d | ∇f(x∗)d = 0, ∇F (x∗)d ∈ TΩ(F (x∗))

}
.

Thus d ∈ C(x∗) if and only if ∇F (x∗)d ∈ TΩ(F (x∗)) and 〈λ0,∇F (x∗)d〉 = 0. There-
fore the following results will be useful.

Proposition 5.5. For (x, y) ∈ Ω and (d,w) ∈ TΩ(x, y), take (u, v) ∈ N̂Ω(x, y)
such that 〈(u, v), (d,w)〉 = 0. Then

σ
(
(u, v)|T 2

Ω((x, y); (d,w))
)

=

 0 if x ∈ intK, y = 0;
0 if x = 0, y ∈ intK;
0 if x = 0, y = 0

 .
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If x ∈ bdK\{0} and y = 0, then

σ
(
(u, v)|T 2

Ω((x, y); (d,w))
)

=

{
0 if d ∈ intTK(x), w = 0;

−u1

x1
(d2

1 − ‖d2‖2)− 2
w1d

T
2 v2

‖x2‖ − 2
d1w

T
2 v2

‖x2‖ if d ∈ bdTK(x), w ∈ R+x̂

}
.

If x = 0 and y ∈ bdK\{0}, then

σ
(
(u, v)|T 2

Ω((x, y); (d,w))
)

=

{
0 if d = 0, w ∈ intTK(y);

− v1

y1
(w2

1 − ‖w2‖2)− 2
d1w

T
2 u2

‖y2‖ − 2
w1d

T
2 u2

‖y2‖ if d ∈ R+ŷ, w ∈ bdTK(y)

}
.

If x, y ∈ bdK\{0}, then

σ
(
(u, v)|T 2

Ω((x, y); (d,w))
)

=
x1u1 + y1v1

x2
1

(
‖d2‖2 − d2

1

)
+
x1w1 − y1d1

x1y1

(
wT v − dTu

)
.

Proof. For (x, y) ∈ Ω, take (d,w) ∈ TΩ(x, y), (p, q) ∈ T 2
Ω((x, y); (d,w)) with the

exact formula given in Theorem 4.5 and (u, v) ∈ N̂Ω(x, y), whose exact formula can
be found in [20, Theorem 3.1].

Case (i): x ∈ intK and y = 0. In this case u = 0 and q = 0. Hence

σ
(
(u, v)|T 2

Ω((x, y); (d,w))
)

= max{〈(u, v), (p, q)〉 | (p, q) ∈ T 2
Ω((x, y); (d,w))} = 0.

The proof for the case in which x = 0 and y ∈ intK is similar and hence we omit it.

Case (ii): x ∈ bdK\{0} and y = 0. Then u ∈ R−x̂ and v ∈ x̂◦ by the formula of

N̂Ω(x, y).

Case (ii-1): d ∈ intTK(x) and w = 0. Then by Theorem 4.5, q = 0. Since
0 = 〈u, d〉+ 〈v, w〉 = 〈u, d〉 and d ∈ intTK(x) (i.e., dT x̂ > 0), we have u = 0. Hence

σ
(
(u, v)|T 2

Ω((x, y); (d,w))
)

= max{〈(u, v), (p, q)〉|(p, q) ∈ T 2
Ω((x, y); (d,w))} = 0.

Case (ii-2): d ∈ bdTK(x) and w = 0. Then q = 0 or q ∈ R+x̂ by Theorem 4.5.
Hence

σ
(
(u, v)|T 2

Ω

(
(x, y); (d,w)

))
= max

{
σ(u|T 2

K(x; d)), σ(u|bdT 2
K(x; d)) + σ(v|R+x̂)

}
= σ(u|T 2

K(x; d)) = −u1

x1
(d2

1 − ‖d2‖2),

where the second equality holds because σ(v|R+x̂) = 0 since v ∈ x̂◦, and the last
step comes from the fact that since u ∈ R−x̂, 〈u, p〉 = u1

x1
〈x̂, p〉 ≤ u1

x1
(‖d2‖2 − d2

1)

for all p ∈ T 2
K(x; d) by Lemma 3.3, and the maximum can be attained by letting

p =
‖d2‖2−d2

1

2x2
1

x̂.

Case (ii-3): d ∈ bdTK(x) and w ∈ R++x̂. From the formula for bdTK(x) in this
case, we get d ⊥ x̂. Hence 〈v, w〉 = 〈(u, v), (d,w)〉 = 0, taking into account that
u ∈ R−x̂. This further implies that v ⊥ x̂ (i.e., v1 = x̄T2 v2), because w ∈ R++x̂.
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Hence

σ
(
(u, v)|T 2

Ω

(
(x, y); (d,w)

))
= σ(u|bdT 2

K(x; d)) + 〈v, q〉

= −u1

x1
(d2

1 − ‖d2‖2) + v1q1 − q1v
T
2 x̄2 − 2

w1d
T
2 v2

‖x2‖
− 2

d1w
T
2 v2

‖x2‖

= −u1

x1
(d2

1 − ‖d2‖2)− 2
w1d

T
2 v2

‖x2‖
− 2

d1w
T
2 v2

‖x2‖
.

Case (iii): x = 0 and y ∈ bdK\{0}. The argument is similar to the above case.

Case (iv): x, y ∈ bdK\{0}. Note that in this case, since xT y = 0, we have y = kx̂
with k := y1/x1. Since (u, v) ∈ N̂Ω(x, y) and (d,w) ∈ TΩ(x, y), by the formulas of
N̂Ω(x, y) and TΩ(x, y) we have v ⊥ y, d ⊥ y, and there exist β, γ ∈ R such that
û+ kv = βx and ŵ − kd = rx. To simplify the notation, let

ξ := (x1w1 − y1d1)

(
w2 + w1x̄2

y1
− d2 − d1x̄2

x1

)
.

Since v ⊥ y, y ∈ Rx̂, and x1 = ‖x2‖ 6= 0, we have v1 − x̄T2 v2 = 0. It follows that
(38)

vT2 ξ = (x1w1 − y1d1)

(
wT2 v2 + w1v1

y1
− dT2 v2 − d1v1

x1

)
=
x1w1 − y1d1

y1
(wT v − dTu),

where in the last step we used the fact that dT v̂ = (1/k)dT (βx̂ − u) = −(1/k)dTu
since d ⊥ x̂. By the formula of T 2

Ω((x, y); (d,w)) in Theorem 4.5, for this case we have

(39) p ∈ bdT 2
K(x; d), q ∈ bdT 2

K(y;w), ξ − p1y2 − q1x2 = x1q2 + y1p2.

Therefore,

〈u, p〉+ 〈v, q〉
= 〈û, p̂〉+ 〈v, q〉 = 〈βx− kv, p̂〉+ 〈v, q〉 = β〈x̂, p〉+ 〈v, q − kp̂〉

= β〈x̂, p〉+ v1(q1 − kp1) + vT2

(
ξ

x1
+ (kp1 − q1)x̄2

)
= β〈x̂, p〉+

1

x1
vT2 ξ =

x1u1 + y1v1

x2
1

(
‖d2‖2 − d2

1

)
+
x1w1 − y1d1

x1y1
(wT v − dTu),

where the fourth equality holds by virtue of (39), the fifth equality holds because
v1 = vT2 x̄2, and the sixth equality holds due to (38) and (39). The desired formula
follows.

Case (v): x = 0 and y = 0. In this case d,w ∈ K, d ⊥ w, (u, v) ∈ N̂Ω(x, y) =
(−K,−K), and (p, q) ∈ T 2

Ω

(
(x, y); (d,w)

)
= TΩ(d,w).

Case (v-1): d = 0 and w ∈ intK. Since 〈v, w〉 = 〈(u, v), (d,w)〉 = 0 and v ∈ −K,
we have v = 0. Since d = 0 and w ∈ intK, (p, q) ∈ T 2

Ω

(
(x, y); (d,w)

)
= TΩ(d,w) im-

plies that p = 0. Hence 〈(u, v), (p, q)〉 = 0. It follows that σ
(
(u, v)|T 2

Ω((x, y); (d,w))
)

=
0.

Case (v-2): d ∈ intK and w = 0. This is similar to the above case.

Case (v-3): d,w ∈ bdK\{0}. Then since (u, v) ∈ (−K,−K) and 〈(u, v), (d,w)〉 =

0, we have u ∈ R−d̂ = R−w and v ∈ R−ŵ = R−d. Since (p, q) ∈ TΩ(d,w) and d,w ∈
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bdK\{0}, we have p ⊥ w and q ⊥ d. Hence p ⊥ u and q ⊥ v. So 〈(u, v), (p, q)〉 = 0.
It follows that σ((u, v)|T 2

Ω((x, y); (d,w))) = 0.

Case (v-4): d = 0 and w ∈ bdK\{0}. Since 〈v, w〉 = 〈(u, v), (d,w)〉 = 0 and
v ∈ −K, we have v ∈ R−ŵ. In this case, since (p, q) ∈ TΩ(d,w) with d = 0 and
w ∈ bdK\{0}, we have either p = 0 and q ∈ TK(w) or p ∈ R+ŵ and q ⊥ ŵ. If
p = 0 and q ∈ TK(w) (i.e., ŵT q ≥ 0), then 〈(u, v), (p, q)〉 = 〈v, q〉 ≤ 0 and the
maximum is 0, which can be attained by letting q = 0. If p ∈ R+ŵ and q ⊥ ŵ, then
〈(u, v), (p, q)〉 = 〈u, p〉 ≤ 0, where the last step is due to u ∈ −K and p ∈ R+ŵ ∈ K,
and the maximum is 0, which can be attained by letting p = 0. It follows that
σ((u, v)|T 2

Ω((x, y); (d,w))) = 0.

Case (v-5): d ∈ bdK\{0} and w = 0. This is similar to the above case by an
analogous argument.

Case (v-6): d = 0 and w = 0. In this case (p, q) ∈ TΩ(d,w) = Ω. Since
(u, v) ∈ (−K,−K), we have 〈(u, v), (p, q)〉 ≤ 0 and the maximum is 0, which can be
attained by letting (p, q) = (0, 0). It follows that σ((u, v)|T 2

Ω((x, y); (d,w))) = 0.

Example 5.1. Consider the following SOCMPCC:

min f(x) := −x2
2 + x1 − x4

s.t. K 3 G(x) := (x1, x3 − x1, x1 − x2) ⊥ (−x2 + 1, x1, x1 − x4) =: H(x) ∈ K.

Since x1 ≥ x1 − x2 and −x2 + 1 ≥ 0, we have x2 ∈ [0, 1]. Hence x2
2 ≤ x2. Since

−x2 + 1 ≥ −x1 +x4, −x2 +x1−x4 ≥ −1. Thus −x2
2 +x1−x4 ≥ −x2 +x1−x4 ≥ −1.

Hence x∗ = (0, 0, 0, 1) is an optimal solution, and G(x∗) = (0, 0, 0) and H(x∗) =
(1, 0,−1) ∈ bdK\{0}.

Note that

∇G(x∗) =

 1 0 0 0
−1 0 1 0
1 −1 0 0

 , ∇H(x∗) =

0 −1 0 0
1 0 0 0
1 0 0 −1

 ,
and by the formula of the tangent cone in Lemma 4.2, we have
(40)

TΩ(G(x∗), H(x∗)) =

{
(d,w)

∣∣∣∣ either d = 0, −w1 − w3 ≤ 0
or d = t(1, 0, 1) for some t ≥ 0, w1 + w3 = 0

}
.

Hence
linTΩ(G(x∗), H(x∗)) = {((0, 0, 0), (τ1, τ2,−τ1)) | τ1, τ2 ∈ R}.

For any v ∈ R6, take

ξ = (v1, v1 − v3, v1 + v2, v3 − v4 − v6) ∈ R4

and

τ = (v1 − v3 + v4, v5 − v1,−(v1 − v3 + v4)) ∈ R3.

Then

v =

(
∇G(x∗)
∇H(x∗)

)
ξ +

(
0
τ

)
∈ ∇F (x∗)R4 + linTΩ(F (x∗)).

Since v is arbitrarily taken from R6, condition (32) holds.
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The Lagrangian multiplier system is


1
0
0
−1

+ λG1


1
0
0
0

+ λG2


−1
0
1
0

+ λG3


1
−1
0
0



+ λH1


0
−1
0
0

+ λH2


1
0
0
0

+ λH3


1
0
0
−1

 =


0
0
0
0

 ,

(λG, λH) ∈ NΩ

(
G(x∗), H(x∗)

)
.

Since G(x∗) = (0, 0, 0) and H(x∗) = (1, 0,−1) ∈ bdK\{0}, we obtain the following
expression of the limiting normal cone from [20, Theorem 5.1]:

NΩ

(
G(x∗), H(x∗)

)
=

{
(u, v)

∣∣∣∣ v = 0 or u1 + u3 = 0, v = t(1, 0, 1), t ∈ R,
or u1 + u3 ≤ 0, v = t(1, 0, 1), t ≤ 0

}
.

Hence the only multipliers (λG, λH) satisfying the Lagrangian multiplier system are
λG = (−1, 0, 1) and λH = (−1, 0,−1). Note that

C(x∗) = {d ∈ R4 | (d1, d3− d1, d1− d2,−d2, d1, d1− d4) ∈ TΩ(G(x∗), H(x∗)), d1 ≤ d4}
= {d= (t, 0, t, t) | t≥ 0},

where the second equality follows from (40).
Since ∇G(x∗)d = (t, 0, t), ∇H(x∗)d = (0, t, 0) for any d = (t, 0, t, t) with t ≥ 0 in

C(x∗), by Proposition 5.5 we obtain

σ
(
(λG, λH)|T 2

Ω(G(x∗), H(x∗);∇G(x∗)d,∇H(x∗)d)
)

= −t2 = −d2
1.

Since

∇2
xxL(x, λ) = ∇2f(x) =


0 0 0 0
0 −2 0 0
0 0 0 0
0 0 0 0

 ,
we have

(41) ∇2
xxL(x∗, λ)(d, d) = 0 ∀d ∈ C(x∗),

and by Theorem 5.4,

Υ(x∗, λ)(d)

:= ∇2
xxL(x∗, λ)(d, d)− σ

(
(λG, λH)|T 2

Ω(G(x∗), H(x∗);∇G(x∗)d,∇H(x∗)d)
)

= d2
1 ≥ 0 ∀d ∈ C(x∗).(42)

Equations (41) and (42) indicate that ∇2
xxL(x∗, λ) is positive semidefinite over C(x∗)

while Υ(x∗, λ) is positive definite over C(x∗)\{0}. In this example, the second-order
necessary conditions involving the second-order tangent set (42) are stronger than the
one not involving the second-order tangent set (41).
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