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Abstract This paper considers a class of stochastic second-order-cone complemen-
tarity problems (SSOCCP), which are generalizations of the noticeable stochastic
complementarity problems and can be regarded as the Karush–Kuhn–Tucker con-
ditions of some stochastic second-order-cone programming problems. Due to the
existence of random variables, the SSOCCP may not have a common solution for
almost every realization . In this paper, motivated by the works on stochastic com-
plementarity problems, we present a deterministic formulation called the expected
residual minimization formulation for SSOCCP.We present an approximationmethod
based on the Monte Carlo approximation techniques and investigate some properties
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related to existence of solutions of the ERM formulation. Furthermore, we experi-
ment some practical applications, which include a stochastic natural gas transmission
problem and a stochastic optimal power flow problem in radial network.

Keywords SSOCCP · ERM formulation · Monte Carlo approximation · Natural gas
transmission · Optimal power flow

Mathematics Subject Classification 90C15 · 90C30 · 90C33

1 Introduction

The second-order cone (SOC) in �ν is a closed cone defined as

Kν := {(x1, x2) ∈ � × �ν−1 | ‖x2‖ ≤ x1},

where ‖ · ‖ denotes the Euclidean norm. The second-order-cone complementarity
problem (SOCCP) is to find vectors x, y ∈ �n and z ∈ �l satisfying

x ∈ K, y ∈ K, xT y = 0, F(x, y, z) = 0, (1)

where F : �n × �n × �l → �n × �l is continuously differentiable and

K := Kn1 × · · · × Knm (2)

with n1 + · · · + nm = n. This problem is clearly a generalization of the classical
mixed complementarity problems and, especially, it includes the Karush–Kuhn–
Tucker conditions of various second-order-cone programs (SOCP), which have lots
of applications in engineering design and portfolio optimization etc. [2], as special
cases. The SOCCP Eq. (1) has attracted much attention of many researchers and there
have been proposed several methods for solving it; see, e.g., [4,10,16,18].

In order to develop numerical algorithms for SOCCP, the so-called SOC comple-
mentarity function φ : �ν × �ν → �ν satisfying

s ∈ Kν, t ∈ Kν, sT t = 0 ⇐⇒ φ(s, t) = 0 (3)

has been studied extensively. Two such functions known in the literature are presented
by Fukushima et al. in [16]: One is the vector-valued Fischer–Burmeister function
associated with Kν defined as

φFB(s, t) := s + t − (s2 + t2)1/2 (4)

and the other is the natural residual function associated with Kν defined as

φNR(s, t) := s − [s − t]+, (5)

where [ · ]+ denotes the projection operator onto the convex cone Kν .
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To understand the above two functions, we need to review some basic concepts in
Jordan algebras. For any s = (s1, s2) ∈ � × �ν−1 and t = (t1, t2) ∈ � × �ν−1, their
Jordan product is defined as

s ◦ t := (sT t, t1s2 + s1t2).

The identity element under this product is e := (1, 0, · · · , 0)T ∈ �ν and, for
simplicity, we denote by s2 = s ◦ s. See [13] for more details about the Jordan product
associated with symmetric cones.

We next recall the spectral factorization of vectors in �ν associated with the cone
Kν . It is well-known that any vector s = (s1, s2) ∈ � × �ν−1 can be decomposed as

s = λ1u
1 + λ2u

2,

where {λ1, λ2} and {u1, u2} are respectively the spectral values and the associated
spectral vectors of s given by, for i = 1, 2,

λi := s1 + (−1)i ‖ s2 ‖,

ui :=
{

1
2

(
1, (−1)i s2‖s2‖

)
if s2 
= 0,

1
2

(
1, (−1)iw

)
if s2 = 0

with w being an arbitrary unit vector in �ν−1. It is obvious that, if s2 
= 0, the above
decomposition is unique. It is shown in [16] that the projection of the vector s onto
Kν can be written as

[s]+ = [λ1]+u1 + [λ2]+u2,

where [λ]+ := max{λ, 0} for a scalar λ ∈ �. Moreover, if s ∈ Kν , there exists a
unique vector s1/2 ∈ Kν such that (s1/2)2 = s. Thus, the functions defined in Eqs. (4)
and (5) can be represented as

φFB(s, t) = s + t − (s2 + t2)1/2 = s + t − (
√

λ1u
1 + √

λ2u
2),

where {λ1, λ2} and {u1, u2} are given by, for i = 1, 2,

λi := ‖s‖2 + ‖t‖2 + 2(−1)i‖s1s2 + t1t2‖,

ui :=
{

1
2

(
1, (−1)i s1s2+t1t2‖s1s2+t1t2‖

)
if s1s2 + t1t2 
= 0,

1
2

(
1, (−1)iw

)
if s1s2 + t1t2 = 0,

and

φNR(s, t) = s − [s − t]+ = s − ([λ1]+u1 + [λ2]+u2), (6)
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where {λ1, λ2} and {u1, u2} are given by, for i = 1, 2,

λi := s1 − t1 + (−1)i‖s2 − t2‖, (7)

ui :=
{

1
2

(
1, (−1)i s2−t2‖s2−t2‖

)
if s2 
= t2,

1
2

(
1, (−1)iw

)
if s2 = t2,

(8)

with w ∈ �ν−1 being an arbitrary unit vector. Note that both φFB and φNR are locally
Lipschitz continuous but not differentiable everywhere [16].

Denote by x := (x1, · · · , xm) ∈ �n1 × · · · × �nm and y := (y1, · · · , ym) ∈
�n1 ×· · ·×�nm . By means of the SOC complementarity function Eq. (3), the SOCCP
Eq. (1) can be easily reformulated as nonlinear equations

Φ(x, y) :=
⎡
⎢⎣

φ(x1, y1)
...

φ(xm, ym)

⎤
⎥⎦ = 0, F(x, y, z) = 0 (9)

and, along this approach, someNewton-typemethods have been developed for solving
Eq. (1) successively. Another approach is to reformulate Eq. (1) as an optimization
problem

min
(x,y,z)

‖Φ(x, y)‖2 + ‖F(x, y, z)‖2

and some descent methods based on this approach are presented for solving Eq. (1).
See [5] for more details about recent developments on SOCCP.

In this paper, we consider the following stochastic SOCCP (SSOCCP): Find vectors
x, y ∈ �n and z ∈ �l such that

x ∈ K, y ∈ K, xT y = 0, F(x, y, z, ξ) = 0 a.e. ξ ∈ Ω, (10)

where Ω denotes the support of the random variable ξ , F : �n × �n × �l × Ω →
�n × �l , and a.e. is the abbreviation for “almost every”. This problem is obviously a
generalization of the stochastic complementarity problem (SCP)

x ≥ 0, F(x, ξ) ≥ 0, xTF(x, ξ) = 0 a.e. ξ ∈ Ω, (11)

which has been extensively studied in the recent literature. See [19] for more details
about the existing reformulations, numerical methods, and applications of Eq. (11).

Consider the stochastic optimization problem

min f (u)

s.t. h(u, ξ) = 0, g(u, ξ) ≤ 0 a.e. ξ ∈ Ω, (12)

where the objective may involve expectations or variances. This problem has many
practical applications such as water management in cooling-constrained power plants
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[27], homogeneous product market [32], etc. Note that the problems with stochastic
dominance constraints and the two-stage stochastic programs with recourse can be
rewritten in a generalized form of Eq. (12); see [12,26]. In addition, methodologies
for some special cases of Eq. (12) are also considered; see, e.g., [28,32].

If some component functions of g(·, ξ) are SOC-representable [20], then Eq. (12)
can be rewritten as a second-order-cone programming problem

min f (u)

s.t. h(u, ξ) = 0, H(x, u, ξ) = 0 a.e. ξ ∈ Ω,

x ∈ K. (13)

Recall that the SOC-representable functions include linear functions, convex
quadratic functions, fractional quadratic functions, etc.; see, e.g., [2,20] for more
details. Note that the equality constraints in Eq. (13) can be rewritten as

h̃(u) := Eξ [h(u, ξ) · h(u, ξ)] = 0,

H̃(x, u) := Eξ [H(x, u, ξ) · H(x, u, ξ)] = 0,

whereEξ denotes the expectation operator and · denotes the Hadamard product. Then,
the Karush–Kuhn–Tucker system of problem Eq. (13) is

∇ f (u) + ∇ h̃(u)λ + ∇u H̃(x, u)μ = 0,

∇x H̃(x, u)μ − y = 0,

h(u, ξ) = 0, H(x, u, ξ) = 0 a.e. ξ ∈ Ω,

x ∈ K, y ∈ K, xT y = 0,

which is in the form of Eq. (10). This is one motivation to study the SSOCCP Eq. (10)
in this paper. Besides, instead of rewriting Eq. (12) into Eq. (13) by the above SOC rep-
resentable approach, our research is also inspired by some well-established practical
engineering SOC programming problems, as shown in Sects. 4.1 and 4.2. Specifically,
engineers usually use the SOC convexification to attack malignant nonconvexity in
practice and it is interesting that the SOC relaxation may be exact with physical
explanation in some cases (for instance, in Sect. 4.2, we study a circuit network of
tree topology in which the alternating current optimal power flow (AC-OPF) admits an
exact SOC relaxation). When uncertainty occurs (for example, the renewable resource
is involved; see Sect. 4.2), problem Eq. (13) appears naturally and motivates us to
explore the SSOCCP Eq. (10) as well.

However, because of the existence of the random element ξ , we generally cannot
expect that there exist vectors {x, y, z} satisfying Eq. (10) for almost every ξ ∈ Ω .
This means that the SSOCCP Eq. (10) may not have a solution in general. Therefore,
in order to get reasonable solutions in some senses, we need to present appropriately
deterministic formulations for Eq. (10). In this paper, we mainly consider a deter-
ministic formulation called expected residual minimization (ERM) formulation for
Eq. (10), which is motivated by the work [7] on the SCP Eq. (11). An approximation
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method based on the Monte Carlo approximation techniques for solving the ERM
model are proposed in Sect. 2 and some properties related to existence of solutions
of the ERM model are discussed in Sect. 3. Then, in Sect. 4, we report the modeling
effectiveness and computational efficiency of our investigations within the framework
of two practical engineering settings, namely, a stochastic natural gas transmission
problem and a stochastic optimal power flow problem in radial network.

Throughout this paper, we assume that the support set Ω is a compact set with
infinite number of elements in a finite dimensional Euclidean space and F(x, y, z, ξ) is
twice continuously differentiable with respect to (x, y, z) and continuously integrable
with respect to ξ . For a given differentiable function H : �n → �m and a vector
x ∈ �n, ∇H(x) denotes the transposed Jacobian of H at x . Given a vector x ∈ �n

and a set X ⊆ �n , dist(x, X) denotes the distance from x to X under the Euclidean
norm. For a given m × n matrix A = (ai j ), ‖A‖F denotes its Frobenius norm, that
is, ‖A‖F := (

∑m
i=1

∑n
j=1 a

2
i j )

1/2. Moreover, I and O denote the identity matrix and
null matrix with suitable dimensions, respectively, and co{X} denotes the convex hull
of a set X . In addition, we use sign(·) to stand for the sign function.

2 ERM formulation for SSOCCP

As introduced in Sect. 1, by means of the SOC complementarity function Eq. (3), the
SSOCCP Eq. (10) can be reformulated as the stochastic nonlinear equations

Φ(x, y) = 0, F(x, y, z, ξ) = 0 a.e. ξ ∈ Ω,

where Φ is given as in Eq. (9). Recall that the above stochastic equations may not
have a common solution in general. Motivated by the work [7] on the SCP Eq. (11),
we propose an ERM formulation for (10) as

min
(x,y,z)

θERM(x, y, z) := Eξ [ ‖F(x, y, z, ξ)‖2 ] + ‖Φ(x, y)‖2. (14)

Onemain difficulty in dealingwithEq. (14) is that the problemcontains an expectation,
which may have no analytical expression in general. We can employ the Monte Carlo
sampling techniques to approximate the expectation. Another possible difficulty is that
the SOC complementarity function φ is generally not differentiable everywhere and so
the objective function may be nonsmooth. But this is not always the case. For the two
SOC complementarity functions introduced in Sect. 1, ‖φFB‖2 is actually a smooth
function although φFB is nonsmooth, while ‖φNR‖2 and φNR are both nonsmooth
functions.

As is known to us, the functions φFB and φNR are generalizations of the classical
real-valued complementary functions

ϕFB(a, b) := a + b −
√
a2 + b2, (a, b) ∈ �2
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and

ϕmin(a, b) := min{a, b}, (a, b) ∈ �2

respectively. Similarly to their prototypes, compared with each other, φFB owns better
smoothing property and φNR has better approximation property. In particular, since
φNR(s, t) = s − [s − t]+ = t − [t − s]+ for any s and t in �ν , we have

φNR(s, t) =
{
s if t − s ∈ Kν,

t if s − t ∈ Kν,

while there always exists a positive gap between φFB(s, t) and either s or t . This
advantage that φNR possesses may be particularly useful in dealing with the SOCCP

G(x) ∈ K, H(x) ∈ K, G(x)T H(x) = 0.

Our numerical experience reported in Sect. 4 also reveals that φNR may have better
performance even though one fairly small smoothing parameter is involved. Further
comparison between these two complementarity functions are given in Sect. 3.

In general, for an integrable function ψ : Ω → �, the Monte Carlo sam-
pling estimate for Eξ [ψ(ξ)] is obtained by taking independently and identically
distributed random samples Ωk := {ξ1, . . . , ξ Nk } from Ω and letting Eξ [ψ(ξ)] ≈
1
Nk

∑
ξ i∈Ωk

ψ(ξ i ). We assume that Nk tends to infinity as k increases. The strong
law of large numbers guarantees that this procedure converges with probability one
(abbreviated by “w.p.1” below), that is,

lim
k→∞

1

Nk

∑
ξ i∈Ωk

ψ(ξ i ) = Eξ [ψ(ξ)] w.p.1. (15)

In what follows, we consider two cases where φ is taken to be φFB and φNR in
Eq. (14) respectively.

2.1 The case of φFB

Consider the smooth ERM model

min
(x,y,z)

θFB(x, y, z) := Eξ [ ‖F(x, y, z, ξ)‖2 ] + ‖ΦFB(x, y)‖2, (16)

whereΦFB denotes the functionΦ given in Eq. (9) by takingφ to beφFB. By generating
independently and identically distributed random samples Ωk = {ξ1, . . . , ξ Nk } from
Ω , we can obtain the following approximation of Eq. (16):

min
(x,y,z)

θkFB(x, y, z) := 1

Nk

∑
ξ i∈Ωk

‖F(x, y, z, ξ i )‖2 + ‖ΦFB(x, y)‖2. (17)
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We next study the convergence of the above sample average approximationmethod.
Since (17) is a nonconvex optimization problem, we only investigate the limiting
behavior of its stationary points here. Actually, similar convergence result for its opti-
mal solutions can be obtained more easily.

Theorem 1 Suppose that (xk, yk, zk) is a stationary point of problem Eq. (17) for
each k and (x̄, ȳ, z̄) is an accumulation point of the sequence {(xk, yk, zk)}. Then
(x̄, ȳ, z̄) is a stationary point of problem Eq. (16) with probability one.

Proof Without loss of generality, we may assume limk→∞(xk, yk, zk) = (x̄, ȳ, z̄).
Let B be a compact and convex set containing the whole sequence {(xk, yk, zk)}. By
the continuity of F , ∇(x,y,z)F, and ∇2

(x,y,z)Fj ( j = 1, . . . , n + l) on the compact set

B × Ω , there exists a constant C̄ > 0 such that

‖F(x, y, z, ξ)‖ ≤ C̄, ‖∇(x,y,z)F(x, y, z, ξ)‖F ≤ C̄, (18)

‖∇2
(x,y,z)Fj (x, y, z, ξ)‖F ≤ C̄ ( j = 1, . . . , n + l) (19)

hold for every (x, y, z, ξ) ∈ B × Ω . Let

ΨFB(x, y) := ‖ΦFB(x, y)‖2.

By Proposition 2 of [6], ΨFB is smooth, that is, ∇ΨFB is continuous everywhere.
For each k, since (xk, yk, zk) is stationary to problem Eq. (17), we have

2

Nk

∑
ξ i∈Ωk

∇(x,y,z)F(xk, yk, zk, ξ i )F(xk, yk, zk, ξ i ) +
[∇ΨFB(xk, yk)

0

]
= 0. (20)

Consider the first term in the left–hand of Eq. (20). For each k and each j =
1, . . . , n + l, we have

∣∣∣ 1

Nk

∑
ξ i∈Ωk

∇(x,y,z)Fj (x
k, yk, zk, ξ i )T F(xk, yk, zk, ξ i )

− 1

Nk

∑
ξ i∈Ωk

∇(x,y,z)Fj (x̄, ȳ, z̄, ξ
i )T F(x̄, ȳ, z̄, ξ i )

∣∣∣
≤ 1

Nk

∑
ξ i∈Ωk

‖∇(x,y,z)Fj (x
k, yk, zk, ξ i )‖ ‖F(xk, yk, zk, ξ i ) − F(x̄, ȳ, z̄, ξ i )‖

+ 1

Nk

∑
ξ i∈Ωk

‖∇(x,y,z)Fj (x
k, yk, zk, ξ i )−∇(x,y,z)Fj (x̄, ȳ, z̄, ξ

i )‖ ‖F(x̄, ȳ, z̄, ξ i )‖

≤ C̄

Nk

∑
ξ i∈Ωk

∫ 1

0

(
‖∇(x,y,z)F(t xk+(1 − t)x̄, t yk+(1 − t)ȳ, t zk+(1 − t)z̄, ξ i )‖F

+‖∇2
(x,y,z)Fj (t x

k + (1 − t)x̄, t yk + (1 − t)ȳ, t zk + (1 − t)z̄, ξ i )‖F
)
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×‖(xk, yk, zk) − (x̄, ȳ, z̄)‖ dt
≤ 2C̄2‖(xk, yk, zk) − (x̄, ȳ, z̄)‖
→ 0 as k → +∞,

where the second inequality follows from the mean-value theorem and Eq. (18), the
third inequality follows from Eqs. (18)–(19). We then have from Eq. (15) that

lim
k→∞

2

Nk

∑
ξ i∈Ωk

∇(x,y,z)F(xk, yk, zk, ξ i )F(xk, yk, zk, ξ i )

= lim
k→∞

2

Nk

∑
ξ i∈Ωk

∇(x,y,z)F(x̄, ȳ, z̄, ξ i )F(x̄, ȳ, z̄, ξ i )

= 2Eξ [ ∇(x,y,z)F(x̄, ȳ, z̄, ξ)F(x̄, ȳ, z̄, ξ) ]
= Eξ [ ∇(x,y,z)(‖F(x̄, ȳ, z̄, ξ)‖2) ]

holds with probability one. Moreover, by Eq. (18), we have

‖∇(x,y,z)F(x, y, z, ξ)F(x, y, z, ξ)‖ ≤ C̄2, (x, y, z, ξ) ∈ B × Ω

and hence, by Theorem 16.8 of [22],

lim
k→∞

2

Nk

∑
ξ i∈Ωk

∇(x,y,z)F(xk, yk, zk, ξ i )F(xk, yk, zk, ξ i ) = ∇Eξ [ ‖F(x̄, ȳ, z̄, ξ)‖2 ]

holds with probability one. Thus, letting k → +∞ in Eq. (20), we have

∇Eξ [ ‖F(x̄, ȳ, z̄, ξ)‖2 ] + ∇ΨFB(x̄, ȳ) = 0 w.p.1,

which means that (x̄, ȳ, z̄) is a stationary point of Eq. (16) with probability one. ��

2.2 The case of φNR

Consider the nonsmooth ERM model

min
(x,y,z)

θNR(x, y, z) := Eξ [ ‖F(x, y, z, ξ)‖2 ] + ‖ΦNR(x, y)‖2, (21)

whereΦNR denotes the functionΦ given in Eq. (9) by taking φ to be φNR. To deal with
this model, besides the Monte Carlo sampling techniques, some smoothing skills are
also necessary. Here, we employ the following smoothing approximation presented in
[16] for the function φNR defined in Eq. (5): given a scalar μ > 0, let

φ
μ
NR(s, t) := s − 1

2

(
(

√
λ21 + 4μ2 + λ1)u

1 + (

√
λ22 + 4μ2 + λ2)u

2
)
,
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where {λ1, λ2} and {u1, u2} are the same as in Eqs. (7) and (8) respectively. It is shown
in [16] that, for each (s, t) ∈ �2ν ,

lim
μ→+0

φ
μ
NR(s, t) = φNR(s, t)

and φ
μ
NR is a smooth function with

∇φ
μ
NR(s, t) =

[
I − Mμ(s, t)
Mμ(s, t)

]
, (22)

where

Mμ(s, t) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

aμ(s, t)I if s2 − t2 = 0,

⎡
⎢⎢⎣

bμ(s, t) dμ(s,t)(s2−t2)T

‖s2−t2‖

dμ(s,t)(s2−t2)
‖s2−t2‖

(bμ(s,t)−cμ(s,t))(s2−t2)(s2−t2)T

‖s2−t2‖2 + cμ(s, t)I

⎤
⎥⎥⎦

if s2 − t2 
= 0

for s = (s1, s2) ∈ � × �ν−1 and t = (t1, t2) ∈ � × �ν−1 with

aμ(s, t) := s1−t1
2
√

(s1−t1)2+4μ2
+ 1

2 , (23)

bμ(s, t) := s1−t1−‖s2−t2‖
4
√

(s1−t1−‖s2−t2‖)2+4μ2
+ s1−t1+‖s2−t2‖

4
√

(s1−t1+‖s2−t2‖)2+4μ2
+ 1

2 , (24)

cμ(s, t) := s1−t1√
(s1−t1−‖s2−t2‖)2+4μ2+

√
(s1−t1+‖s2−t2‖)2+4μ2

+ 1
2 , (25)

dμ(s, t) := − s1−t1−‖s2−t2‖
4
√

(s1−t1−‖s2−t2‖)2+4μ2
+ s1−t1+‖s2−t2‖

4
√

(s1−t1+‖s2−t2‖)2+4μ2
. (26)

In addition, from the proof of Proposition 5.1 in [16], it is not difficult to see that
there exists a positive constant C such that

‖φμ
NR(s, t) − φNR(s, t)‖ ≤ Cμ (27)

holds for each (s, t) ∈ �2ν .
Taking a smoothing parameterμk > 0 and independently and identically distributed

random samples Ωk := {ξ1, . . . , ξ Nk } from Ω , we can obtain the following smooth
approximation of Eq. (21):

min
(x,y,z)

θkNR(x, y, z) := 1

Nk

∑
ξ i∈Ωk

‖F(x, y, z, ξ i )‖2 + ‖Φμk
NR(x, y)‖2, (28)
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where

Φ
μ
NR(x, y) :=

⎡
⎢⎣

φ
μ
NR(x1, y1)

...

φ
μ
NR(xm, ym)

⎤
⎥⎦

for x = (x1, . . . , xm) ∈ �n1 × . . . × �nm and y = (y1, . . . , ym) ∈ �n1 × · · · × �nm .
Suppose that μk → +0 as k → +∞. We next study the convergence of the above
sample average approximation method. As mentioned in the last subsection, we only
need to investigate the limiting behavior of stationary points of problem Eq. (28)
because similar convergence result for optimal solutions can be obtained more easily.
To this end, the following definitions are useful.

Definition 1 [11] Let H : �p → �q be locally Lipschitz continuous. The Clarke
generalized gradient of H at w is defined as

∂H(w) := co
{

lim
w′→w,w′∈DH

∇H(w′)
}
,

where DH denotes the set of points at which H is differentiable.

Definition 2 [18] Let H : �p → �q be locally Lipschitz continuous and Hμ :
�p → �q be a function such that Hμ is continuously differentiable everywhere for
any μ > 0 and limμ→+0 Hμ(w) = H(w) for any w ∈ �p. We say that Hμ satisfies
the Jacobian consistency with H if

lim
μ→+0

dist
(∇Hμ(w), ∂H(w)

) = 0

holds for any w ∈ �p.

For simplicity, we denote by

ΨNR(x, y) := ‖ΦNR(x, y)‖2, Ψ
μ
NR(x, y) := ‖Φμ

NR(x, y)‖2,
and, for x = (x1, . . . , xm) ∈ �n1×· · ·×�nm and y = (y1, . . . , ym) ∈ �n1×· · ·×�nm ,
we let

Ψ i
NR(xi , yi ) := ‖φNR(xi , yi )‖2, Ψ

μ,i
NR (xi , yi ) := ‖φμ

NR(xi , yi )‖2

for each i . Then we have

∂ΨNR(x, y) = ∂Ψ 1
NR(x1, y1) × · · · × ∂Ψ m

NR(xm, ym) (29)

and

∇Ψ
μ
NR(x, y) =

⎡
⎢⎣

∇Ψ
μ,1
NR (x1, y1)

...

∇Ψ
μ,m
NR (xm, ym)

⎤
⎥⎦ . (30)
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By Theorem 4.9 of [18], we have the following lemma immediately.

Lemma 1 The function Ψ
μ
NR satisfies the Jacobian consistency with ΨNR.

We next show the main convergence result of this subsection.

Theorem 2 Suppose that (xk, yk, zk) is a stationary point of problem Eq. (28) for
each k and (x̄, ȳ, z̄) is an accumulation point of the sequence {(xk, yk, zk)}. Then
(x̄, ȳ, z̄) is a stationary point of problem Eq. (21) with probability one.

Proof Without loss of generality,wemay assume limk→∞(xk, yk, zk) = (x̄, ȳ, z̄). Let
B and C̄ > 0 be the same as in the proof of Theorem 1. For each k, since (xk, yk, zk)
is stationary to problem Eq. (28), we have

2

Nk

∑
ξ i∈Ωk

∇(x,y,z)F(xk, yk, zk, ξ i )F(xk, yk, zk, ξ i ) +
[∇Ψ

μk
NR(xk, yk)

0

]
= 0.(31)

In a similar way to the proof of Theorem 1, we can show that

lim
k→∞

2

Nk

∑
ξ i∈Ωk

∇(x,y,z)F(xk, yk, zk, ξ i )F(xk, yk, zk, ξ i )

= ∇Eξ [ ‖F(x̄, ȳ, z̄, ξ)‖2 ] (32)

holds with probability one. We next show

lim
k→∞ dist

(∇Ψ
μk
NR(xk, yk), ∂ΨNR(x̄, ȳ)

) = 0.

Denote by xk := (xk,1, . . . , xk,m) ∈ �n1 × · · · × �nm , yk := (yk,1, . . . , yk,m) ∈
�n1 × · · · × �nm for each k and by x̄ := (x̄1, . . . , x̄m) ∈ �n1 × · · · × �nm , ȳ :=
(ȳ1, . . . , ȳm) ∈ �n1 × · · · × �nm . From Eqs.( 29) and ( 30), it is sufficient to show
that, for each i ,

lim
k→∞ dist

(∇Ψ
μk ,i
NR (xk,i , yk,i ), ∂Ψ i

NR(x̄ i , ȳi )
) = 0. (33)

First of all, for any given i , we have

∥∥φμk
NR(xk,i , yk,i ) − φ

μk
NR(x̄ i , ȳi )

∥∥
≤ ∥∥φ

μk
NR(xk,i , yk,i ) − φNR(xk,i , yk,i )

∥∥ + ∥∥φNR(xk,i , yk,i ) − φNR(x̄ i , ȳi )
∥∥

+∥∥φNR(x̄ i , ȳi ) − φ
μk
NR(x̄ i , ȳi )

∥∥
≤ 2Cμk + ∥∥φNR(xk,i , yk,i ) − φNR(x̄ i , ȳi )

∥∥
→ 0 as k → +∞, (34)

where the second inequality follows from Eq. (27). We consider five cases:
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(I) Suppose that x̄ i = ȳi . It follows that λ̄ j = x̄ i1 − ȳi1 + (−1) j‖x̄ i2 − ȳi2‖ = 0 for
j = 1, 2. By Theorem 4.6 and Proposition 4.8 of [18], we have

∂Ψ i
NR(x̄ i , ȳi ) =

{
2

[
I − V
V

]
φNR(x̄ i , ȳi )

∣∣∣∣ V ∈ co(O, I, S)

}
,

where

S :=
{
1

2

[
1 wT

w (1 + β)I − βwwT

] ∣∣∣∣ β ∈ [−1, 1], ‖w‖ = 1

}
.

It is not difficult to see from Eqs. (23)–(26) that any accumulation points of the
sequences

{aμk (x
k,i , yk,i )}, {bμk (x

k,i , yk,i )}, {cμk (x
k,i , yk,i )}, {dμk (x

k,i , yk,i )}

belong to the intervals [0, 1], [0, 1], [0, 1], [0, 1
2 ] respectively. Therefore, any

accumulation point of {Mμk (x
k,i , yk,i )}must belong to co(O, I, S). On the other

hand, it is easy to see from Eqs. (27) and (34) that limk→∞ φ
μk
NR(xk,i , yk,i ) =

φNR(x̄ i , ȳi ). Therefore, by Eq. (22), we can obtain Eq. (33) easily.
(II) Suppose that x̄ i 
= ȳi and x̄ i2 − ȳi2 = 0. Since {∇φ

μk
NR(xk,i , yk,i )} is bounded, we

have from Eq. (34) that

lim
k→∞ ∇φ

μk
NR(xk,i , yk,i )

(
φ

μk
NR(xk,i , yk,i ) − φ

μk
NR(x̄ i , ȳi )

) = 0. (35)

On the other hand, it is easy to see from Eqs. (23)–(26) that

lim
k→∞ aμk (x

k,i , yk,i ) = lim
k→∞ bμk (x

k,i , yk,i ) = lim
k→∞ cμk (x

k,i , yk,i )

= 1

2
sign(x̄ i1 − ȳi1) + 1

2

and limk→∞ dμk (x
k,i , yk,i ) = 0, which means

lim
k→∞

(
Mμk (x

k,i , yk,i ) − Mμk (x̄
i , ȳi )

) = 0 (36)

and hence

lim
k→∞

(∇φ
μk
NR(xk,i , yk,i ) − ∇φ

μk
NR(x̄ i , ȳi )

) = 0. (37)

Since {φμk
NR(x̄ i , ȳi )} is bounded, we have

lim
k→∞

(∇φ
μk
NR(xk,i , yk,i ) − ∇φ

μk
NR(x̄ i , ȳi )

)
φ

μk
NR(x̄ i , ȳi ) = 0. (38)
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Therefore, it follows from Eqs. (35) and (38) that

1

2

∥∥∇Ψ
μk ,i
NR (xk,i , yk,i ) − ∇Ψ

μk ,i
NR (x̄ i , ȳi )

∥∥
= ∥∥∇φ

μk
NR(xk,i , yk,i )φμk

NR(xk,i , yk,i ) − ∇φ
μk
NR(x̄ i , ȳi )φμk

NR(x̄ i , ȳi )
∥∥

≤ ∥∥∇φ
μk
NR(xk,i , yk,i )

(
φ

μk
NR(xk,i , yk,i ) − φ

μk
NR(x̄ i , ȳi )

)∥∥
+∥∥(∇φ

μk
NR(xk,i , yk,i ) − ∇φ

μk
NR(x̄ i , ȳi )

)
φ

μk
NR(x̄ i , ȳi )

∥∥
→ 0 as k → +∞.

By Lemma 1, we have

lim
k→∞ dist

(∇Ψ
μk ,i
NR (x̄ i , ȳi ), ∂Ψ i

NR(x̄ i , ȳi )
) = 0

and hence Eq. (33) holds.
(III) Suppose that x̄ i2 − ȳi2 
= 0 and |x̄ i1 − ȳi1| 
= ‖x̄ i2 − ȳi2‖. From Eqs. (23)–(26), we

have

lim
k→∞

(
aμk (x

k,i , yk,i ) − aμk (x̄
i , ȳi )

) = lim
k→∞

(
bμk (x

k,i , yk,i ) − bμk (x̄
i , ȳi )

) = 0,

lim
k→∞

(
cμk (x

k,i , yk,i ) − cμk (x̄
i , ȳi )

) = lim
k→∞

(
dμk (x

k,i , yk,i ) − dμk (x̄
i , ȳi )

) = 0,

which implies Eq. (36) and hence Eq. (37). In a similar way to (II), we can get
Eq. (33).

(IV) Suppose that x̄ i2 − ȳi2 
= 0 and x̄ i1 − ȳi1 = ‖x̄ i2 − ȳi2‖. It follows that λ̄1 = 0 and
λ̄2 > 0. By Theorem 4.6 and Proposition 4.8 of [18], we have

∂Ψ i
NR(x̄ i , ȳi ) =

{
2

[
I − V
V

]
φNR(x̄ i , ȳi )

∣∣∣∣ V ∈ co(I, I + Z)

}
,

where

Z := 1

2

⎡
⎢⎣ −1

(x̄ i2−ȳi2)
T

‖x̄ i2−ȳi2‖
x̄ i2−ȳi2

‖x̄ i2−ȳi2‖
− (x̄ i2−ȳi2)(x̄

i
2−ȳi2)

T

‖x̄ i2−ȳi2‖2

⎤
⎥⎦ .

Note that, by Eqs. (23)–(26), any accumulation points of the sequences

{bμk (x
k,i , yk,i )}, {cμk (x

k,i , yk,i )}, {dμk (x
k,i , yk,i )}

belong to [ 12 , 1], [ 12 , 1], [0, 1
2 ] respectively. It is not difficult to see that any

accumulation point of {Mμk (x
k,i , yk,i )} must belong to co(I, I + Z). Since

limk→∞ φ
μk
NR(xk,i , yk,i ) = φNR(x̄ i , ȳi ), by Eq. (22), we can obtain Eq. (33)

easily.
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(V) Suppose that x̄ i2 − ȳi2 
= 0 and x̄ i1 − ȳi1 = −‖x̄ i2 − ȳi2‖. It follows that λ̄1 < 0 and
λ̄2 = 0. By Theorem 4.6 and Proposition 4.8 of [18], we have

∂Ψ i
NR(x̄ i , ȳi ) =

{
2

[
I − V
V

]
φNR(x̄ i , ȳi )

∣∣∣∣ V ∈ co(O, Z)

}
,

where

Z := 1

2

⎡
⎢⎣ 1

(x̄ i2−ȳi2)
T

‖x̄ i2−ȳi2‖
x̄ i2−ȳi2

‖x̄ i2−ȳi2‖
(x̄ i2−ȳi2)(x̄

i
2−ȳi2)

T

‖x̄ i2−ȳi2‖2

⎤
⎥⎦ .

In a similar way to (IV), we can show Eq. (33).

As a result, Eq. (33) holds in all cases. Letting k → +∞ in Eq. (31), we have from
Eqs. (32)–(33) that

0 ∈ ∇Eξ [ ‖F(x̄, ȳ, z̄, ξ)‖2 ] + ∂ΨNR(x̄, ȳ) × {0} w.p.1,

which means that (x̄, ȳ, z̄) is a stationary point of Eq. (21) with probability one. ��

2.3 Exponential convergence rate

In this subsection, we show that, with the increase of sample size, the optimal solutions
of the approximation problem Eqs. (17) or (28) converge exponentially to a solution
of the ERM formulation Eqs. (16) or (21) with probability approaching one under
suitable conditions. To this end, we first introduce a lemma.

Lemma 2 [28]LetW be a compact set and h : W×Ω → � be integrable everywhere.
Suppose that the following conditions hold:

(i) For every w ∈ W, the moment generating function

Eξ

[
et (h(w,ξ)−Eξ [h(w,ξ)])]

is finite-valued for all t in a neighbourhood of zero.
(ii) There exist a measurable function κ : Ω → �+ and a constant γ > 0 such that

|h(w′, ξ) − h(w, ξ)| ≤ κ(ξ)‖w′ − w‖γ

for all ξ ∈ Ω and all w′, w ∈ W.
(iii) The moment generating function Eξ [etκ(ξ)] is finite-valued for all t in a neigh-

bourhood of zero.
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Then, for every ε > 0, there exist positive constants D(ε) and β(ε), independent
of Nk, such that

Prob
{
sup
w∈W

∣∣∣ 1

Nk

∑
ξ i∈Ωk

h(w, ξ i ) − Eξ [h(w, ξ)]
∣∣∣ ≥ ε

}
≤ D(ε)e−Nkβ(ε).

Applying the above lemma, we can obtain the following result related to the expo-
nential convergence of the above approximation methods.

Theorem 3 Let (xk, yk, zk) be an optimal solution of Eq. (17) or Eq.( 28) for each k
and (x̄, ȳ, z̄) be an accumulation point of the sequence {(xk, yk, zk)}. Then, for every
ε > 0, there exist positive constants D(ε) and β(ε), independent of Nk, such that

Prob
{
|θkFB(xk, yk, zk) − θFB(x̄, ȳ, z̄)| ≥ ε

}
≤ D(ε)e−Nkβ(ε) (39)

or

Prob
{
|θkNR(xk, yk, zk) − θNR(x̄, ȳ, z̄)| ≥ ε

}
≤ D(ε)e−Nkβ(ε). (40)

Proof Without loss of generality, we assume that {(xk, yk, zk)} itself converges to
(x̄, ȳ, z̄). Let B be a compact set that contains the whole sequence {(xk, yk, zk)}.

(1) Consider the case for Eq. (17). We first show that there exist positive constants
D(ε) and β(ε) such that

Prob
{

sup
(x,y,z)∈B

|θkFB(x, y, z) − θFB(x, y, z)| ≥ ε
}

≤ D(ε)e−Nkβ(ε), (41)

which is equivalent to show

Prob
{

sup
(x,y,z)∈B

∣∣∣ 1

Nk

∑
ξ i∈Ωk

‖F(x, y, z, ξ i )‖2 − Eξ [‖F(x, y, z, ξ)‖2]
∣∣∣ ≥ ε

}

≤ D(ε)e−Nkβ(ε)

by Eqs. (16) and (17). To do this, it is sufficient to prove that the set W := B and the
function h(x, y, z, ξ) := ‖F(x, y, z, ξ)‖2 satisfy the conditions given in Lemma 2. In
fact, since both Ω and B are compact, by the continuous differentiability assumption
on F given in Sect. 1, these conditions hold.

Since (xk, yk, zk) is an optimal solution of Eq. (17) for each k, in a similar way
to Theorem 1, we can show that (x̄, ȳ, z̄) is an optimal solution of Eq. (14). It then
follows that

θkFB(xk, yk, zk) ≤ θkFB(x̄, ȳ, z̄), θFB(x̄, ȳ, z̄) ≤ θFB(xk, yk, zk),
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from which we have

θkFB(xk, yk, zk) − θFB(x̄, ȳ, z̄)

= θkFB(xk, yk, zk) − θkFB(x̄, ȳ, z̄) + θkFB(x̄, ȳ, z̄) − θFB(x̄, ȳ, z̄)

≤ θkFB(x̄, ȳ, z̄) − θFB(x̄, ȳ, z̄)

≤ sup
(x,y,z)∈B

|θkFB(x, y, z) − θFB(x, y, z)|

and

θkFB(xk, yk, zk) − θFB(x̄, ȳ, z̄)

= θkFB(xk, yk, zk) − θFB(xk, yk, zk) + θFB(xk, yk, zk) − θFB(x̄, ȳ, z̄)

≥ θkFB(xk, yk, zk) − θFB(xk, yk, zk)

≥ − sup
(x,y,z)∈B

|θkFB(x, y, z) − θFB(x, y, z)|.

It follows that

|θkFB(xk, yk, zk) − θFB(x̄, ȳ, z̄)| ≤ sup
(x,y,z)∈B

|θkFB(x, y, z) − θFB(x, y, z)|.

This together with Eq. (41) implies Eq. (39).
(2) Consider the case for Eq. 28. In this case, it is sufficient to show that the setW :=

B×[0, μ0] and the function h(x, y, z, μ, ξ) := ‖F(x, y, z, ξ)‖2 +Φ
μ
NR(x, y) satisfy

the conditions given in Lemma 2. In fact, this can be guaranteed by the assumptions
given at the end of Sect. 1 and Eq. (27). Thus, in a similar manner to (1), we can show
Eq. (40) easily. This completes the proof. ��

2.4 Boundedness of level sets

It iswell known that the boundedness of the iteration sequences is a desired requirement
for various optimization methods. In order to ensure the boundedness of the iteration
sequence, we generally investigate the boundedness of level sets. Given a nonnegative
number γ , the level set of the ERM model Eq. 14 is given as

LERM(γ ) := {(x, y, z) ∈ �2n+l | θERM(x, y, z) ≤ γ }.

Note that, if there is some ni > 1 and we take

xk := (· · · , k, k, 0, · · · , 0︸ ︷︷ ︸
Kni

, · · · )T , yk := (· · · , k,−k, 0, · · · , 0︸ ︷︷ ︸
Kni

, · · · )T

for every k, then both xk and yk belong to the cone K and they are perpendicular to
each other. This means Φ(xk, yk) = 0 for each k, where Φ is given in Eq. 9 with φ
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to be an SOC complementarity function, regardless of whether it takes φFB or φNR.
As a result, we can only investigate the conditions on the mapping F to guarantee the
boundedness of the level set LERM(γ ).

Definition 3 [30] The mapping H : �p × Ω → �q is locally coercive if, for any
{wk} ⊆ �p satisfying ‖wk‖ → +∞, we have

Prob{ lim
k→∞ ‖H(wk, ξ)‖ = +∞} > 0.

The main result of this subsection can be stated as follows.

Theorem 4 Suppose that F is locally coercive. Then, for any γ ≥ 0, the level set
LERM(γ ) is bounded.

Proof Suppose on the contrary that there exist a constant γ > 0 and a sequence
{(xk, yk, zk)} ⊆ �2n+l with ‖(xk, yk, zk)‖ → +∞ such that

θERM(xk, yk, zk) ≤ γ

for each k. It follows that

γ ≥ Eξ [ ‖F(xk, yk, zk, ξ)‖2 ] ≥ (
Eξ [ ‖F(xk, yk, zk, ξ)‖ ])2 (42)

for each k. By the Fatou’s lemma [22], we have

Eξ [ lim inf
k→∞ ‖F(xk, yk, zk, ξ)‖ ] ≤ lim inf

k→∞ Eξ [ ‖F(xk, yk, zk, ξ)‖ ]. (43)

Note that F is locally coercive, which means that

Prob{ lim
k→∞ ‖F(xk, yk, zk, ξ)‖ = +∞} > 0.

Therefore, the left-hand side in Eq. (43) is infinity and hence

lim inf
k→∞ Eξ [ ‖F(xk, yk, zk, ξ)‖ ] = +∞,

which contradicts Eq. (42) and so the level set LERM(γ ) is bounded for any γ ≥ 0. ��

3 Comparison between φNR and φFB

As stated at the beginning of Sect. 2, the function φFB generally owns better smoothing
property, while the function φNR has better approximation property. On the other
hand, Chen and Fukushima [7] show that, in the one-dimensional case, φNR has some
property that φFB does not possess; see Lemma 2.2 and Example 1 given in [7] for
details. An interesting and natural question is whether the result can be extended to
multi-dimensional cases. We devote to answer this question in this section.
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Consider the following special affine SSOCCP:

x ∈ K, M(ξ)x + q(ξ) ∈ K, xT (M(ξ)x + q(ξ)) = 0 a.e. ξ ∈ Ω, (44)

where M : Ω → �n×n and q : Ω → �n . For Eq. (44), it is natural to suggest its
ERM formulation as follows:

min
x

θ(x) := Eξ [ ‖Φ(x, M(ξ)x + q(ξ))‖2 ], (45)

where Φ is the same as in Eq. (9). Then we have the following result for φNR.

Theorem 5 Let Ω := {ξ1, ξ2, . . . , ξ N } and each ni ≤ 2 in Eq.( 2). Then the solution
set of problem Eq. (45) with φ to be φNR is nonempty.

Proof First of all, we show that ‖φNR(s, t)‖2 is a piecewise quadratic function over
polyhedral partitions in (s, t) ∈ �ni × �ni when ni ≤ 2. In fact, it is evident that
φNR(s, t) = min{s, t} is piecewise quadratic when ni = 1. Next, we suppose ni = 2
and consider the following five cases:

(I) Suppose that s2 − t2 = 0. It is easy to see that

‖φNR(s, t)‖2 =
{ ‖s‖2 if s1 ≤ t1, s2 = t2,

‖t‖2 if s1 ≥ t1, s2 = t2.

(II) Suppose that s1 − t1 ≥ |s2 − t2| > 0. This means s − t ∈ K2 and hence

‖φNR(s, t)‖2 = ‖t‖2

from the discussion at the beginning of Sect. 2.
(III) Suppose that s1 − t1 ≤ −|s2 − t2| < 0. This means t − s ∈ K2 and, similarly to

(II), we have

‖φNR(s, t)‖2 = ‖s‖2.

(IV) Suppose that s2 − t2 > 0 and t2 − s2 ≤ s1 − t1 ≤ s2 − t2. By Eqs. (6)–(8), we
have

‖φNR(s, t)‖2 =
∥∥∥s − [s1 − t1 − |s2 − t2|]+( 12 ,− s2−t2

2|s2−t2| )
T

−[s1 − t1 + |s2 − t2|]+( 12 ,
s2−t2

2|s2−t2| )
T
∥∥∥2

= 1

4
(s1 + t1 − s2 + t2)

2 + 1

4
(−s1 + t1 + s2 + t2)

2.

(V) Suppose that s2 − t2 < 0 and s2 − t2 ≤ s1 − t1 ≤ t2 − s2. By Eqs. (6)–(8), we
have
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‖φNR(s, t)‖2 =
∥∥∥s − [s1 − t1 − |s2 − t2|]+( 12 ,− s2−t2

2|s2−t2| )
T

−[s1 − t1 + |s2 − t2|]+( 12 ,
s2−t2

2|s2−t2| )
T
∥∥∥2

= 1

4
(s1 + t1 + s2 − t2)

2 + 1

4
(s1 − t1 + s2 + t2)

2.

In summary, from the continuity of the function φNR, we have

‖φNR(s, t)‖2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

t21 + t22 if s1 − t1 ≥ s2 − t2, s1 − t1 ≥ t2 − s2,
s21 + s22 if t1 − s1 ≥ s2 − t2, t1 − s1 ≥ t2 − s2,
1
4 (s1 + t1 − s2 + t2)2 + 1

4 (−s1 + t1 + s2 + t2)2

if t2 − s2 ≤ s1 − t1 ≤ s2 − t2, s2 − t2 ≥ 0,
1
4 (s1 + t1 + s2 − t2)2 + 1

4 (s1 − t1 + s2 + t2)2 otherwise,

which indicates that ‖φNR(s, t)‖2 is indeed a piecewise quadratic function over poly-
hedral partitions in (s, t).

Note that the objective function of Eq. (45) can be written as

θ(x) =
m∑
i=1

N∑
j=1

p j ‖φNR(xi , yij )‖2,

where x := (x1, . . . , xm) ∈ �n1 × · · · × �nm , M(ξ j )x + q(ξ j ) := (y1j , . . . , y
m
j ) ∈

�n1 ×· · ·×�nm for each j = 1, . . . , N , and p j denotes the probability of the sample
ξ j for each j = 1, . . . , N . From the above discussion, it is not difficult to see that the
objective function θ is piecewise quadratic function over polyhedral partitions. Since
this function is bounded below on whole space, by the Frank–Wolfe theorem given in
[15], problem Eq. (45) has an optimal solution at least. This completes the proof. ��

Theorem 5 indicates that Lemma 2.2 in [7] can be extended from one-dimensional
cases to two-dimensional cases. It is still an open question whether the lemma can
be extended to general cases. Note that, by Example 1 given in [7], the conclusion in
Theorem 5 does not hold for the case of φFB.

Remark 1 If we rewrite the affine SSOCCP Eq. (44) by introducing an additional
variable as the form

x ∈ K, y ∈ K, xT y = 0, y − M(ξ)x + q(ξ) = 0 a.e. ξ ∈ Ω

and consider its ERM model

min
(x,y)

Eξ [ ‖y − M(ξ)x − q(ξ)‖2 ] + ‖Φ(x, y)‖2 (46)

instead of problem Eq. (45), then we can get an interesting and understandable result,
that is, Theorem 5 remains true without the discrete assumption related to the sample
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space Ω (we can show this result in a very similar way and so omit its proof here).
Our next question is how about the case of φFB? Note that Example 1 in [7] can not
serve as a counterexample in this case. In fact, for this example, the model Eq. (46)
becomes

min
(x,y)

y2 + 1 + (x + y −
√
x2 + y2)2,

which attains its infimum at x∗ = 0 and y∗ = 0 obviously. We are not sure whether
the model Eq. (46) with φ to be φFB has similar conclusion as φNR. We would like to
leave it as a future work.

4 Applications

The theoretical results given in the previous sections indicate that the SSOCCPEq. (10)
can be solved via the variation schemeEq. (14). In this section, as a further supplement,
we consider two practical engineering problems.

4.1 Natural gas production and transportation

Natural gas is one of the fastest-growing energy sources. How to plan the generation
and distribution of natural gas in transmission networks is becoming a key issue in
gas production and transportation. Recently, a substantial number of studies focus on
natural gas transmission optimization problems [23,25,29]. The most difficult issue
in optimization is from the nonlinear relationship between the transmission flow in a
pipeline and the pressures at two ends of the pipeline, and the uncertainty of losses at
compressor stations. In this subsection, we implement the ERM framework to solve
this type of problems.

Consider an optimizationmodel for a natural gas network1 consisted by a number of
hub-and-spoke subnetworks where every hub is a compressor station with a number of
fields andmarkets connected to and only to it.Wedenote byN := {1, 2, . . . , N } the set
of nodes in the transmission network, which is classified into three subsets: Ng ⊂ N
of all field nodes with producers, Ns ⊂ N of all station nodes with compressors by
which every gas flow is split into two or more pipelines, and Nm ⊂ N of all market
nodes with consumptions. Without loss of generality, we assume that the intersections
between any two of the above subsets are empty. This assumption can be achieved
by introducing virtual pipelines. For every node i ∈ N , we have two sets of nodes
connected to it: I(i), the set of nodes with pipelines going into node i , and O(i), the
set of nodes with pipelines going out node i . It is worth emphasizing that, due to the
hub-and-spoke structure, for any i ∈ Ng , I(i) is empty and O(i) is a singleton with
its element being the station node to which node i is connected. Similarly, for any
i ∈ Nm , O(i) is empty and I(i) is a singleton with its element being the station node
from which node i is connected.

1 We refer readers to [3,25] for detailed analysis on how to model natural gas production and transmission.
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Uncertainties often occur in transmission operations (for example, a small propor-
tion of the gas flow at a station is tapped off transmission pipelines to provide fuel for
the compressors at the station; see, e.g., Sect. V in [31]). Here, we take the losses at
stations as uncertainties and denote by ξi the loss at node i ∈ Ns . We also denote the
losses at all compressor stations by a random vector ξ := (ξ1, . . . , ξS), where S is the
number of stations in the network.

The transmission network is centrally operated to deliver natural gas for each mar-
ket.Wedenote by p j (Q j ) the unit price of natural gas inmarket j ∈ Nm ,where p j (Q j )

is a decreasing function with respect to the supply quantity Q j into market j . In our
study, we consider an extensively investigated price function p j (Q j ) := a j −b jQ j for
every j ∈ Nm . At field nodes, before real transmissions, the producers are contracted
for their minimum generations. We use Gi to denote the minimum generation at node
i and Ci to denote the unit generation cost of natural gas at field i ∈ Ng .

Now we introduce the parameters for pipelines. We denote by Pmax
i j and Pmin

i j

(P̄max
i j and P̄min

i j ) the maximum and minimum pressures at the inlet (outlet) end of

the pipeline from node i to node j for i, j ∈ N . Here, we define Pmax
i j = Pmin

i j = 0

and P̄max
i j = P̄min

i j = 0 when i and j are not connected. To generate one unit inlet
pressure for the pipeline from i to j , a cost ci j is incurred. In our model, the pressures
at the inlet ends of the pipelines connecting from fields to stations are fixed by the
production contract and denoted by P̂i j for every i ∈ Ng and the corresponding station
node j ∈ O(i), which is enforced by the production standards. On the other hand, the
pressures at the inlet ends of the pipelines connecting tomarkets from stations are fixed
by the supply contracts and denoted by P̂ji for every i ∈ Nm and the corresponding
station node j ∈ I(i), which is predetermined based on the market standards.

The nonlinear relationship between the pressure difference at two ends of a pipeline
and the quantity of natural gas transmitted through this pipeline can be described via
the Weymouth equation. In particular, the flow qi j for the pipeline connecting nodes
i and j is upper bounded by

qci j (p̂i j , p̌i j ) := Ki j

√
(p̂i j )2 − (p̌i j )2, (47)

where p̂i j and p̌i j are the inlet and outlet pressures, respectively, and Ki j is a constant
computed from the physical properties of this pipeline such as length, dimension,
friction factor, etc.2

2 For a particular pipeline, the Weymouth equation can be expressed as (see (1) and (2) in [1] with the
adjustment on parameter units)

qci j (p̂i j , p̌i j ) = 77.52 × 10−6 ×
(
Tb
pb

)
D5/2

√
(p̂i j )2−(p̌i j )2

γg ZT L f ,

where Tb is the base temperature (unit R), pb is the base pressure (unit psia), D is the inside diameter (unit
in), γg is the gas specific gravity (air = 1), Z is the gas deviation factor at average flowing temperature and
average pressure, T is the average flowing temperature (unit R), L is the length of pipe (unit mile), and f
is the Moody friction factor.
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Fig. 1 a Linear approximation for Weymouth constraints with T = T ′ = 5. b Weymouth constraints.
Weymouth constraint and its linear approximation

To deal with the nonlinearity introduced by Eq. (47), a linear approximation frame-
work is proposed in [25], where the Weymouth equation Eq. (47) is approximated
by a set of linear forms; see Fig. 1. For a pipeline connecting nodes i and j , the
approximation is performed through the following two steps: Firstly, two finite sets of
points T := { p̂ti j , t = 1, 2, . . . , T } and T ′ := { p̌t ′i j , t ′ = 1, 2, . . . , T ′} are selected
from the feasible sets of p̂i j and p̌i j , respectively. Without loss of generality, we let
Pmin
i j ≤ p̂1i j ≤ p̂2i j ≤ · · · ≤ p̂Ti j ≤ Pmax

i j and P̄min
i j ≤ p̌1i j ≤ p̌2i j ≤ · · · ≤ p̌T

′
i j ≤ P̄max

i j ,

where p̂ti j and p̌t
′
i j are selected as ‘breakpoints’ like in [25]. In the second step, the lin-

ear approximations are used to substitute theWeymouth constraintsqi j ≤ qci j (p̂i j , p̌i j )
from Eq. (47) for all i, j ∈ N as

qi j ≤ Ki j

(
p̂ti j√

( p̂ti j )
2−( p̌t

′
i j )

2
p̂i j − p̌t

′
i j√

( p̂ti j )
2−( p̌t

′
i j )

2
p̌i j

)
(48)

for t ∈ T and t ′ ∈ T ′. We refer readers to [25] for more details about the linear
approximation of the Weymouth constraints. For ease of notation, we define

P̂ tt ′
i j := p̂ti j√

( p̂ti j )
2−( p̌t

′
i j )

2
, P̌ tt ′

i j := p̌t
′
i j√

( p̂ti j )
2−( p̌t

′
i j )

2
.

Now let us look into the maximization of the overall profit from gas supply in
the entire network, subject to production, transmission, and compressor constraints.
Because the network is consisted by a number of hub-and-spoke subnetworks (see
Fig. 2 given below), the problem can be reduced to the following second-order cone
program:

max
∑
i∈Nm

pi (Q
+
i )Q+

i −
∑
j∈Ng

C jQ
−
j −

∑
i∈N

∑
j∈I(i)

c ji p̂ j i

s.t.
{ ∑

j∈O(i)

qi j ≥ Gi , ∀ i ∈ Ng,
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q2i j + K 2
i j p̌

2
i j ≤ K 2

i j p̂
2
i j , ∀ i ∈ Ng, j ∈ O(i),

q2j i + K 2
j i p̌

2
j i ≤ K 2

j i p̂
2
j i , ∀ i ∈ Nm, j ∈ I(i),

qi j ≤ Ki j

(
P̂ tt ′
i j p̂i j − P̌ tt ′

i j p̌i j
)

, ∀ t ∈ T , t ′ ∈ T ′, i ∈ Ns, j ∈ O(i) ∩ Ns,

Q+
i =

∑
j∈I(i)

q j i , ∀ i ∈ N ,

Q−
i =

∑
j∈O(i)

qi j , ∀ i ∈ N ,

Q−
i − Q+

i ≤ −ξi , ∀ i ∈ Ns,

P̄min
i j ≤ p̌i j ≤ P̄max

i j , ∀ j ∈ N , i ∈ I( j),

Pmin
i j ≤ p̂i j ≤ Pmax

i j , ∀ j ∈ N , i ∈ I( j)
}

∀ ξi , i ∈ Ns . (49)

Here, the decision variables include the vectors of inlet pressures, outlet pressures,
and flow quantities transmitted in the pipelines and are denoted respectively by

⎧⎨
⎩
p̌ := (

p̌12, . . . , p̌1N , . . . , p̌i j , . . . , p̌N1, . . . , p̌N (N−1)
)
,

p̂ := (
p̂12, . . . , p̂1N , . . . , p̂i j , . . . , p̂N1, . . . , p̂N (N−1)

)
,

q := (
q12, . . . ,q1N , . . . ,qi j , . . . ,qN1, . . . ,qN (N−1)

)
,

the intermediate variables Q+
i and Q−

i are the total quantities transmitted into and
out node i respectively for each i ∈ N . The objective function includes three terms:
the total revenue with pi (Q

+
i )Q+

i to be the revenue obtained from market i ∈ Nm ,
the production costs in the fields with Q−

i to be the quantity of gas produced in field
i ∈ Ng , and the operation costs spent for generating pressures. It is straightforwad to
see that the objective function is concave and quadratic.

Now let us go through the constraints. The first set of constraints is on the pro-
ductions of natural gas at field nodes, which means that the gas quantity transmitted
out a field must be no less than the minimum contracted production. The second set
of constraints is on the flow quantities transmitted in a pipeline from field nodes. By
setting Pmax

i j = 0 for any unconnected pair i ∈ Ng and j ∈ N , we have p̂i j = 0 and
hence qi j = p̌i j = 0. The third set of constraints is on the flow quantities transmitted
in a pipeline to market nodes. By setting Pmax

j i = 0 for any unconnected pair i ∈ Nm

and j ∈ N , we have p̂ j i = 0 and hence q j i = p̌ j i = 0.

Remark 2 Note that the second set of constraints in Eq. (49) can be rewritten as

√
q2i j + K 2

i j p̌
2
i j ≤ Ki j p̂i j

for every i ∈ Ng and the corresponding j ∈ O(i). Similarly, the third set of constraints
in Eq. (49) can be rewritten as

√
q2j i + K 2

j i p̌
2
j i ≤ K ji p̂ j i
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for every i ∈ Nm and the corresponding j ∈ I(i). Therefore, these two sets of
constraints are actually SOC constraints.

The fourth set of constraints is on the flow in a pipeline connecting two station
nodes, where the linear approximations are implemented to reformulate the constraints
qi j ≤ qci j (p̂i j , p̌i j ), i 
= j and i, j ∈ Ns , into linear constraints, where qci j (p̂i j , p̌i j ) is
given as in Eq. (47).

Remark 3 In [25], this typeof linear approximations has beenused for every pipeline in
a transmission network, where the number of constraints resulted from linear approx-
imation is N (N − 1) × T × T ′. For the network with hub-and-spoke substructure,
the second, third and fourth sets of constraints show that we only need to implement
the linear approximations to the pipelines connecting stations and so the number of
constraints on pipeline flows can be reduced in our problem.

The fifth and sixth sets of constraints define Q+
i and Q−

i as the quantities of flows
transmitted into and out node i ∈ N . The seventh set of constraints is on the random
losses at station nodes, where ξi is the quantity of the natural gas tapped off at station
i ∈ Ns . The eighth and ninth sets of constraints are from the upper and lower bounds
of inlet pressures and outlet pressures of pipelines. Recall that Pmax

i j = Pmin
i j = 0 and

P̄max
i j = P̄min

i j = 0 when i and j are not connected. Recall also that the pressures at
inlet ends of pipelines connecting from fields are fixed by the contracts and thus we
define P̄max

i j = P̄min
i j = P̂i j for all i ∈ Ng and, similarly, the inlet ends of pipelines

connecting to the markets from stations are fixed by the supply contracts and thus we
define P̄max

j i = P̄min
j i = P̂ji for all i ∈ Nm .

It is worth mentioning that, in the real world, the natural gases produced at different
fields are usuallywith different percentages of their chemical components, where these
percentages are often used tomeasure the quality of natural gases.Accordingly, another
set of constraints has to be made on inlet and outlet pressures to control the mixed gas
at each station to achieve the contracted quality standard.

To concentrate our focus on applying theoretical framework, we assume that the
natural gas qualities at different fields are the same and never changed in the transmis-
sion. This assumption can be relaxed by introducing a set of linear equality constraints
for mass balance on each component; see, e.g., [25].

Before proceeding to the numerical tests, we summarize the notation on parameters
used in the model in Table 1.

Let us consider an example on a natural gas transmission network with three com-
pressor stations. The network is described in Fig. 2. In this example, the set of market
nodes Nm = {1, 2, . . . , 6}, the set of field nodes Ng = {1′, 2′, 3′}, and the set of
station nodes Ns = {7, 8, 9}. Moreover, markets 1 and 2 (nodes {1, 2}) and field 1
(node {1′}) are connected to station 1 (node 7), markets 3 and 4 (nodes {3, 4}) and field
2 (node {2′}) are connected to station 2 (node 8), and markets 5 and 6 (nodes {5, 6})
and field 3 (node {3′}) are connected to station 3 (node 9).

The values of the parameters in the model are given in Table 2. In the model, we fix
the outlet pressures of pipelines to each compressor station at 15 (unit: psia) and cost
ci j for generating one unit inlet pressure to be 87 (unit: k×CNY/psia) for all pipelines.
In addition, for uncertainties in the model, we let the losses ξi at stations (i.e., nodes
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Table 1 Notation

Gi Minimum production at field i ∈ Ng

Ki j Weymouth constant for pipeline from node i to j ∈ O(i)

P̂ t t ′
i j , P̌ t t ′

i j Coefficients in the linear approximation of Weymouth equations

Pmin
i j , Pmax

i j Lower and upper bounds on inlet end of pipeline from i to j ∈ O(i)

P̄min
i j , P̄max

i j Lower and upper bounds on outlet end of pipeline from i to j ∈ O(i)

ai − biQ
+
i Unit price for gas in market i ∈ Nm

Ci unit cost for gas production in field i ∈ Ng

ci j Unit cost for generating pressure at an end of pipeline from i ∈ N
to j ∈ O(i)

Fig. 2 Structure of the natural gas network

i = 7, 8, 9) follow normal distribution with means being 15, 20, 10 and variances
being 5.5, 9.0, 3.5, respectively.

In our numerical tests, we used the linear approximation Eq. (48) with T = T ′ =
10 for the Weymouth equation Eq. (47). Note that the linear approximation does
not change the objective function and other constraints. We solved our optimization
problems and the problems in [25] with the same samples of ξ . In Table 3, we denote
our optimization problem and the problem in [25] by SOC(n) and LC(n) respectively,
where n is the sample size in each test. In our tests, we varied n from 100, 300 to 1000
and compared the results of SOC(n) and LC(n).

We implemented the ERM scheme to solve this model and analyzed the impact
of loss uncertainties at stations to the overall profit and optimal operations in the
transmission network. The results given in Table 3 were obtained by using the function
φNR. The problems were solved in the GAMS platform byNLP solver. Table 3 lists the

123



Stochastic second-order-cone complementarity problems…

Ta
bl
e
2

N
et
w
or
k
of

Fi
g.

2:
w
ey
m
ou
th

eq
ua
tio

n
pa
ra
m
et
er
s,
pr
od
uc
tio

n
co
st
s,
pr
ic
e
co
-e
ffi
ci
en
ci
es

N
et
w
or
k
da
ta

Pi
pe
lin

e
M
ar
ke
td

at
a

Fr
om

To
p b

T b
D

γ
g

Z
L
en

f
T

N
od

e
a m

b m
pm

in
m

′ m
pm

ax
m

′ m
no

de
no

de
(p
si
a)

(R
)

(i
n)

(a
ir
=
1)

(-
)

(m
ile

)
(-
)

(R
)

(k
C
N
Y
/m

m
cf
d)

(k
C
N
Y
/m

m
cf
d2
)

(p
si
a)

(p
si
a)

1′
7

15
56

0
20

0.
87

0.
93

33
0.
01

56
0

1
29

0.
04

15
15

7
1

15
56

0
30

0.
87

0.
93

11
0.
01

56
0

2
26

0.
04

15
15

7
2

15
56

0
20

0.
87

0.
93

12
0.
01

56
0

3
22

0.
03

15
15

7
8

15
56

0
25

0.
87

0.
93

75
0.
01

56
0

4
21

0.
03

15
15

2′
8

15
56

0
30

0.
85

0.
93

28
0.
01

54
6

5
30

0.
02

15
15

8
3

15
56

0
25

0.
85

0.
93

12
0.
01

54
6

6
25

0.
02

15
15

8
4

15
56

0
20

0.
85

0.
93

12
0.
01

54
6

Fi
el
d
da
ta

8
9

15
56

0
20

0.
85

0.
93

80
0.
01

54
6

N
od

e
G
g

C
g

pm
ax

gg
′

pm
in

gg
′

3′
9

15
56

0
20

0.
90

0.
93

23
0.
01

56
4

g
(m

m
cd
f)

(k
C
N
Y
/m

m
cd
f)

(p
si
a)

(p
si
a)

9
5

15
56

0
20

0.
90

0.
93

13
0.
01

56
4

1′
45

0
19

50
0

9
6

15
56

0
25

0.
90

0.
93

12
0.
01

56
4

2′
80

0
15

50
0

9
7

15
56

0
30

0.
90

0.
93

72
0.
01

56
4

3′
27

5
18

50
0

123



G.-H. Lin et al.

Ta
bl
e
3

N
um

er
ic
al
re
su
lts

fo
r
op
tim

al
flo

w
s,
op
tim

al
in
je
ct
io
n
pr
es
su
re
s,
an
d
op
tim

al
va
lu
es

O
pt
im

al
so
lu
tio

ns

Sa
m
pl
e
si
ze

Fl
ow

s
to

m
ar
ke
tm

Sa
m
pl
e
si
ze

In
le
tp

re
ss
ur
es

at
fie
ld

g

q 7
1

q 7
2

q 8
3

q 8
4

q 9
5

q 9
6

q 1
′ 7

q 2
′ 8

q 3
′ 9

(m
m
cf
d)

(m
m
cf
d)

SO
C
(1
00

)
29

7.
13

24
2.
36

20
0.
00

13
1.
94

76
4.
05

36
8.
92

SO
C
(1
00

)
58

9.
28

11
36

.5
0

37
8.
83

L
C
(1
00

)
28

3.
92

24
4.
73

19
6.
78

13
6.
54

74
2.
03

33
9.
83

L
C
(1
00

)
55

9.
71

12
07

.9
2

35
9.
06

SO
C
(3
00

)
30

3.
59

25
4.
21

20
0.
00

13
7.
75

75
3.
24

36
1.
26

SO
C
(3
00

)
60

8.
49

10
45

.0
8

40
2.
18

L
C
(3
00

)
31

2.
71

26
2.
43

19
4.
41

13
9.
05

72
4.
55

31
2.
90

L
C
(3
00

)
58

9.
28

11
12

.0
5

41
2.
03

SO
C
(1
00

0)
30

5.
02

25
0.
39

20
0.
00

14
2.
54

74
8.
76

35
2.
07

SO
C
(1
00

0)
61

5.
08

10
08

.2
4

43
7.
90

L
C
(1
00

0)
31

7.
85

26
5.
92

19
5.
57

14
0.
31

73
5.
61

33
1.
45

L
C
(1
00

0)
60

1.
44

10
52

.4
3

44
1.
12

Sa
m
pl
e
si
ze

In
le
tp

re
ss
ur
es

to
m
ar
ke
tm

Sa
m
pl
e
si
ze

In
le
tp

re
ss
ur
es

at
fie
ld

g

p̌ 7
1

p̌ 7
2

p̌ 8
3

p̌ 8
4

p̌ 9
5

p̌ 9
6

p̌ 1
′ 7

p̌ 2
′ 8

p̌ 3
′ 9

(p
si
a)

(p
si
a)

SO
C
(1
00

)
26

.8
7

39
.7
1

24
.7
3

21
.9
1

43
.3
3

31
.0
1

10
0

19
.5
6

43
.6
4

26
.9
8

L
C
(1
00

)
25

.1
7

40
.2
5

23
.1
6

22
.7
1

40
.0
0

29
.0
2

L
C
(1
00

)
17

.0
2

45
.9
2

26
.0
1

SO
C
(3
00

)
28

.1
0

40
.5
4

24
.7
3

22
.1
6

43
.0
6

30
.7
6

30
0

19
.6
9

42
.0
6

27
.5
5

L
C
(3
00

)
29

.7
4

42
.9
8

23
.0
1

23
.2
2

39
.5
5

28
.3
2

L
C
(3
00

)
18

.0
3

43
.5
3

28
.3
1

SO
C
(1
00

0)
28

.1
5

40
.2
7

24
.7
3

22
.3
7

42
.9
4

30
.5
6

10
00

19
.7
4

41
.4
0

28
.4
0

L
C
(1
00

0)
30

.2
9

43
.1
2

23
.1
1

23
.9
0

39
.1
1

27
.8
8

L
C
(1
00

0)
18

.8
1

42
.0
1

29
.8
2

Sa
m
pl
e
si
ze

10
0

30
0

10
00

Sa
m
pl
e
si
ze

10
0

30
0

10
00

O
pt
im

al
va
lu
e
(m

C
N
Y
)

1.
31

5
1.
36

7
1.
39

2
T
im

e
(s
ec
)

12
9

21
7

28
9

O
pt
im

al
va
lu
e
in

L
C
(m

C
N
Y
)

1.
23

3
1.
17

2
1.
21

6
T
im

e
in

L
C
(s
ec
)

10
7

19
4

29
6

123



Stochastic second-order-cone complementarity problems…

sample averaged solutions. Here, to avoid redundancy, we only report the main results
in approximation solutions for inlet pressures in pipelines, gas quantities transmitted
by pipelines, and the optimal values of objective function under different sample sizes.

Notice that, in our method, the linear approximation is only incorporated for the
constraints of gas quantities in pipelines connecting stations rather than all pipelines in
‘LC(n)’. Therefore, we can take the results solved from the ‘LC(n)’ model as approx-
imation to the results in ‘SOC(n)’. From another point of view, both models can be
taken as approximations to the true natural gas transmission problem, where ‘SOC(n)’
is closer with less number of linear approximation of the Weymouth constraints. For
computational time, the results show that solving the model with second-order cone
constraint is almost at the same level as ‘LC(n)’ with a little longer computational
time.

4.2 Stochastic SOCP optimal power flow

In this subsection, we consider a stochastic optimal power flow (OPF) model in radial
network connected to the wind farms and recast it as a stochastic SOCP problem. The
proposed stochastic SOCP-OPFmodel can be adopted as a tool for different stochastic
analysis of power systems. We implemented the preceding ERM scheme to solve the
SOCP-OPF model and observed the impact of power injection uncertainty on the total
generation cost in the power systems.

A radial network is composed of buses and lines connecting these buses and has a
tree topology. The root of the tree is a substation bus that is connected to the transmis-
sion network. It has a fixed voltage and redistributes the bulk power receiving from the
transmission network to other buses. We index the substation bus by 0 and the other
buses by 1, . . . , N . Denote by N := {0, 1, . . . , N } the collection of all buses and let
N+ := N \ {0}. Each line connects an ordered pair (i, j) of buses where bus j lies
on the unique path from bus i to bus 0. Let E denote the collection of all lines and
abbreviate (i, j) ∈ E by i → j for convenience.

Uncertainty often occurs when renewable power resources such as wind are incor-
porated. We assume that a subset W of buses holds uncertain power sources (wind
farms) and, for each bus i which holds uncertain power sources, the stochastic amount
of power generated by source i is of the form ξi := ξ

p
i + iξqi , where ξi is an indepen-

dent random variable with known mean and deviation. In particular, we investigate
both the Gaussian and Weibull distributions of ξi . In our model, we further assume
the independence of wind power fluctuations at different sites, which is justified by
the fact that the wind farms are sufficiently far away from each other. For the typical
OPF time span 15 minutes and typical wind speed of 10m/s, fluctuations of wind at
the farms more than 10km apart are not correlated.

For each bus i ∈ N , let Vi denote its complex voltage and define vi := |Vi |2.
Specifically, the substation voltage v0 is given and fixed. Let si := pi + iqi denote the
power injection of bus i , where pi and qi denote the real and reactive power injections
respectively. For each line (i, j) ∈ E , let zi j := ri j +ixi j denote its impedance. Denote
by Ii j the complex current from bus i to bus j and let li j := |Ii j |2. Denote further by
Si j := Pi j + iQi j the sending-end power flow from bus i to bus j , where Pi j and Qi j

123



G.-H. Lin et al.

Table 4 Notation
Vi , vi Complex voltages on bus i with vi = |Vi |2
si = pi + iqi Complex net injection on bus i

Ii j , li j Complex currents from buses i to j
with li j = |Ii j |2

Si j = Pi j + iQi j Complex power flowing out from buses i to bus j

zi j = ri j + ixi j Impedance on line (i, j)

Fig. 3 Illustration of the
notation in network

stand for the real and reactive power flow respectively. As customary, we assume that
the complex voltage V0 on the substation bus is given. We summarize the notation in
Table 4 and Fig. 3.

The OPF problem seeks to minimize the generation cost, subject to power flow
constraint, power injection constraint, and voltage constraint. Following [14,17], in
case of a radial network, the stochastic OPF using branch flow model is reduced to
the following convex optimization problem with exact relaxation or, more precisely,
a second-order cone program, interpreted as operations in real variables:

min
∑
i∈N

fi (p
g
i )

s·t·
{
Pi j = (pgi + ξ

p
i ) − pci +

∑
h:h→i

(Phi − rhi lhi ), ∀(i, j) ∈ E,

Qi j = (qgi + ξ
q
i ) − qci +

∑
h:h→i

(Qhi − xhi lhi ), ∀(i, j) ∈ E,

pg0 − pc0 +
∑

h:h→0

(Ph0 − rh0lh0) = 0,

qg0 − qc0 +
∑

h:h→0

(Qh0 − xh0lh0) = 0,

vi − v j = 2(ri jPi j + xi jQi j ) − li j (r2i j + x2i j ), ∀(i, j) ∈ E,

P2
i j + Q2

i j

vi
≤ li j , ∀(i, j) ∈ E,

si ∈ Si , i ∈ N+,

vi ≤ vi ≤ vi , i ∈ N+} ∀ ξi , i ∈ N+,
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where ξi := ξ
p
i + iξqi , pi := pci − pgi and qi := qci − qgi are the real and reactive net

loads at node i . In particular, pci and qci are the real and reactive power consumption
at node i , pgi and qgi are the real and reactive conventional power generation at node
i . We use h : h → i to denote a collection of buses inN prior to i in the tree network
topology with (h, i) ∈ E and use h : h → 0 to denote the collection of buses in N
prior to the substation root with (h, 0) ∈ E . In addition, we assume that each fi is
convex quadratic and, particularly, fi (p

g
i ) := ci2(p

g
i )

2 + ci1p
g
i + ci0 in our model.

Notice that the convex relaxed power flow equation li j ≥ P2
i j+Q2

i j
vi

, (i, j) ∈ E , is
exactly in the form of a rotated second-order cone in �4, which is a convex set given
as

K2
r := {(x1, x2, x3) ∈ � × � × �2 | x1x2 ≥ xT3 x3, x1 ≥ 0, x2 ≥ 0}.

Trivially, the rotated second-order cone in �4 can be expressed as a linear transfor-
mation (actually, a rotation) of the (plain) second-order cone in �4, due to

x1x2 ≥ xT3 x3, x1 ≥ 0, x2 ≥ 0 ⇐⇒
∥∥∥∥
[
x1 − x2
2x3

] ∥∥∥∥ ≤ x1 + x2.

Recall that (x1, x2, x3) ∈ K2
r if and only if (x1 + x2, x4) ∈ K4, where x4 :=

(x1−x2, 2x3). For a clear presentation in the subsequent discussion,we recast the above
distribution network stochastic dispatch problem in the following compact SOCP
form:

min f (x)

s·t·
{
x ∈ X ,

Ax + Bξ = 0,

‖Gix‖ ≤ gTi x, ∀ i with (i, j) ∈ E
}

∀ ξ, (50)

where the vector x represents all dispatching variables related to optimal power flow
of the distribution network, f (x) represents the total generation cost, and X is the
feasible set of radial distribution network.

Notice that Eq. (50) actually coincides with the linear form of Eq. (13), which is not
computationally trackable by any commonly-used commercial SOCP solvers such as
MOSEK or Gurobi. Our key step toward numerical solution of problem Eq. (50) is to
reformulate it into the SSOCCP Eq. (10) by its KKT system, as discussed previously.
Hence, as in convex programming, the KKT conditions are necessary and sufficient
for global optimality [21]. As each KKT point is a global minimizer of Eq. (50), we
may consider to solve Eq. (50) by searching its KKT points, which is exactly what we
have discussed in the preceding sections for SSOCCP.

In order to evaluate the proposed SSOCP-OPF, a slightly modified version of a
real-world 47-bus network in the service territory of Southern California Edison (SCE)
with two wind farms connected to bus 5 and bus 20 are considered. The SCE network
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Fig. 4 Schematic diagram of SCE 47-bus distribution system

is shown in Fig. 4 with parameters given in Table 5. We suppose that the system
regulator is to optimize the total generation cost in an hourly basis in the presence of
variable wind power generations by assuming that the forecasted distribution for wind
speed is available for the next hour interval. The dispatch results from the day ahead
market, which are obtained by using φFB and φNR, based on the wind power assuming
Gaussianity and Weibull distribution injected to bus 5 and bus 20 in GAMS platform
using default NLP solvers, are given in Tables 6 and 7 respectively. Tables 6 and 7 also
depict the expected residual and the total generation cost, as the sample size increases.

From the numerical results, we observed that, as the sample size increases, the
convergence in terms of both φFB and φNR are stable, e.g., there are clearly convergent
trends toward the expected residual, as well as the dispatching variables. However, as
onemayobserve immediately from the above tables, evenwith a fairly small smoothing
parameter μ = 10−4, φNR results in smaller and better expected residuals in some
sense. Another observation of interest is that, from the time consumptions, the ERM
scheme using φNR performs computationally much powerful than the case of φFB.
Nevertheless, this phenomenon comes as no surprise to us because, as mentioned at
the beginning of Sect. 2, compared with φFB, φNR usually preserves more information
of the complementary structure.

5 Conclusions

We have proposed the ERM formulation Eq. (14) for the SSOCCP Eq. (10). Some
properties related to existence of solutions have been given and an approximation
method based on the Monte Carlo techniques and some smoothing techniques have
been presented. Further applications including the natural gas production and trans-
portation problems and the stochastic optimal power flow problem in radial network
have also been discussed.

Note that we may use the constrained optimization problem

min Eξ [ ‖F(x, y, z, ξ)‖2 ] + ‖Φ(x, y)‖2
s.t. x ∈ K, y ∈ K
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as a new ERM formulation, instead of the unconstrained formulation Eq. (14). It is
possible to extend the convergence results shown in Sect. 2 to this case because the
feasible region of the above problem is convex and the Slater’s constraint qualification
holds for it obviously. One advantage of this constrained formulation is to guaran-
tee better feasibility of approximation solutions than the unconstrained formulation.
Alternatively, as is known to us, the constrained optimization problem is generally
more difficult to solve than the unconstrained optimization problem.

On the other hand, we notice that the multistage variational inequality problems,
which are important generalizations of the single-stage problem Eq. (11) and can be
traced back to the multistage stochastic programs as well, have been considered by
Chen et al. [8] and Rockafellar Wets [24]. As a future work, we will discuss similar
extensions of the SSOCCP Eq. (10) in the next step.
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