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Abstract
We study linear convergence of some first-order methods such as the proximal gradient
method (PGM), the proximal alternating linearized minimization (PALM) algorithm and
the randomized block coordinate proximal gradient method (R-BCPGM) for minimizing
the sum of a smooth convex function and a nonsmooth convex function. We introduce a new
analytic framework based on the error bound/calmness/metric subregularity/bounded met-
ric subregularity. This variational analysis perspective enables us to provide some concrete
sufficient conditions for linear convergence and applicable approaches for calculating linear
convergence rates of these first-order methods for a class of structured convex problems. In
particular, for the LASSO, the fused LASSO and the group LASSO, these conditions are sat-
isfied automatically, and the modulus for the calmness/metric subregularity is computable.
Consequently, the linear convergence of the first-order methods for these important appli-
cations is automatically guaranteed and the convergence rates can be calculated. The new
perspective enables us to improve some existing results and obtain novel results unknown
in the literature. Particularly, we improve the result on the linear convergence of the PGM
and PALM for the structured convex problem with a computable error bound estimation.
Also for the R-BCPGM for the structured convex problem, we prove that the linear conver-
gence is ensured when the nonsmooth part of the objective function is the group LASSO
regularizer.
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1 Introduction

In recent years, there has been a revived interest in studying convex optimization in the form

min
x

F (x) := f (x) + g(x). (1)

These kinds of optimization problems may originate from data fitting models in machine
learning, signal processing, and statistics where f is a loss function and g is a regularizer.
Throughout the paper, our results are given in n-dimensional Euclidean space under the
following blanket assumptions.

Assumption 1 f, g : IRn → (−∞,∞] are two proper lower semi-continuous (lsc) convex
functions.

(i) Function f has an effective domain domf := {x | f (x) < ∞} assumed to be open
and is continuously differentiable with Lipschitz continuous gradient on a closed set
Ω ⊇ domf ∩ domg, and g is continuous on domg;

(ii) the Lipschitz constant of the gradient ∇f (x) is L > 0 and the Lipschitz constant of
the ∇if (x) := ∇xi

f (x) is Li > 0;
(iii) problem (1) has a nonempty solution set denoted by X := arg minx∈IRn F (x) with

the optimal value F ∗.

As the size of the problem (1) in applications increases, first order methods such as the
proximal gradient method (PGM) (see e.g., [42, 44]) have received more attention. Denote
the proximal operator associated with g by

Proxγ
g (a) := arg min

x∈IRn

{
g(x) + 1

2γ
‖x − a‖2

}
,

where γ > 0. The PGM for solving problem (1) has the following iterative scheme:

Algorithm 1 Proximal gradient method.

1: Choose x0 ∈ IRn

2: for k = 0, 1, 2, · · · do
xk+1 = Proxγ

g

(
xk − γ∇f (xk)

)
.

3: end for

When g is an indicator function, the PGM reduces to the projected gradient method (see,
e.g., [44, 47]); when f ≡ 0, it reduces to the proximal point algorithm (see, e.g., [35]) and
when g ≡ 0 it reduces to the standard gradient descent method. It is known that for problem
(1), the PGM converges at least with the sublinear rate of O(1/k) where k is the number of
iterations; see e.g., [7, 42, 59]. However, it has been observed numerically that very often
for problem (1) with some structures, the PGM converges at a faster rate than that suggested
by the theory; see, e.g., [1, 63]. In particular, when f is strongly convex and g is convex,
[43, 55] have proved the global linear convergence of the PGM with respect to the sequence
of objective function values.

In many big data applications arising from, e.g., network control [37], or machine learn-
ing [5, 8, 12], the regularizer g in problems (1) may have block separable structures, i.e.,
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g(x) := ∑N
i=1 gi(xi) with xi ∈ IRmi , gi : IRmi → (−∞, ∞] and n = ∑N

i=1 mi ; see, e.g.,
[38]. In this setting, (1) can be specified as

min
x

F (x) := f (x1, x2, . . . , xN) +
N∑

i=1

gi(xi). (2)

Numerous experiments have demonstrated that the block coordinate descent schemes
are very powerful for solving huge scale instances of model (2). The coordinate descent
algorithm is based on the idea that the minimization of a multivariable function can be
achieved by minimizing it along one direction at a time, i.e., solving univariate (or at least
much simpler) optimization problems in a loop. The reasoning behind this is that coordinate
updates for problems with a large number of variables are much simpler than computing a
full update, requiring less memory and computing power. Coordinate descent methods can
be divided into two main categories: deterministic and random methods.

The simplest case of a deterministic coordinate descent algorithm is the proximal alter-
nating linearized minimization (PALM) algorithm, where the (block) coordinates to be
updated at each iteration are chosen in a cyclic fashion. The PALM for solving (2) reads as:

Algorithm 2 Proximal alternating linearized minimization.

1: Choose x0 ∈ IRn

2: for k = 0, 1, 2, · · · do
3: for i ∈ {1, 2, . . . , N} do

xk+1
i = argmin

xi∈IRmi

{
〈∇if (xk,i−1), xi − xk

i 〉 + ck
i

2 ‖xi − xk
i ‖2 + gi(xi)

}
,

where xk,i := (xk+1
1 , . . . , xk+1

i−1 , xk+1
i , xk

i+1, . . . , x
k
N ) for all i = 1, . . . , N , xk,0 = xk ,

ck
i ≥ Li , and supk,i{ck

i } < ∞.
4: end for
5: end for

The PALM algorithm was introduced in [10] for a class of composite optimization prob-
lems in the general nonconvex and nonsmooth setting. Without imposing more assumptions
or special structures on (2), a global sublinear rate of convergence of PALM for convex
problems in the form of (2) was obtained in [25, 54]. Very recently, a globally linear con-
vergence of PALM for problem (2) with a strongly convex objective function was obtained
in [30]. Note that PALM is also called the block coordinate proximal gradient algorithm in
[25] and the cyclic block coordinate descent-type method in [30].

Unlike its deterministic counterpart PALM where the (block) coordinates which are to be
updated at each iteration are chosen in a cyclic fashion, in the randomized block coordinate
proximal gradient method (R-BCPGM), the (block) coordinates are chosen randomly based
on some probability distribution. In this paper, we prove the linear convergence for the
R-BCPGM with the uniform probability distribution described as follows.

The random coordinate descent method for smooth convex problems was initiated by
[41]. [48] extended it to the nonsmooth case, where the R-BCPGM was shown to obtain
an ε-accurate solution with probability at least 1 − ρ in at most O((N/ε)log(1/ρ)) itera-
tions. [40] applied the R-BCPGM for linearly constrained convex problems and showed its
expected-value type linear convergence under the smoothness and strong convexity. Note
that the R-BCPGM is also called the randomized block-coordinate descent method in [48]
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Algorithm 3 Randomized block coordinate proximal gradient method.

1: Choose x0 ∈ IRn

2: for k = 0, 1, 2, · · · do
Generate with the uniform probability distribution a random index ik from {1, 2, . . . , N}

xk+1 = arg min
x

{
〈∇ik f (xk), xik − xk

ik
〉 + ck

ik

2
‖x − xk‖2 + gik (xik )

}
, (3)

where ck
ik

≥ Li and supk{ck
ik
} < ∞

3: end for

and the coordinate-wise proximal-gradient method in [26]. We refer to [16] for a complete
survey of the R-BCPGM.

The classical method of proving linear convergence of the aforementioned first order
methods requires the strong convexity of the objective function. Surprisingly, many prac-
tical applications do not have strongly convex objective but may still have linear rate of
convergence; see, e.g., [1, 63].

A new line of analysis, that circumvents these difficulties, was developed using the error
bound property that relates the distance of a point to the solution setX to a certain optimality
residual function. The error bound property is in general weaker than the strong convexity
assumption and hence can be satisfied by some problems that have a non-strongly convex
objective function. For convex optimization problems (1) including (2), the use of error
bound conditions for fast convergence rate dates back to [33, 34]. For problem (1) with g

equal to an indicator function, Luo and Tseng [34] are among the first to establish the linear
convergence of feasible descent methods which include the PGM as a special case, under
a so-called Luo-Tseng (local) error bound condition, i.e., for any ξ ≥ infx∈IRn F (x), there
exist constant κ > 0 and ε > 0, such that

dist(x,X ) ≤ κ
∥∥x − Proxγ

g (x − γ∇f (x))
∥∥ ,

whenever F(x) ≤ ξ,
∥∥x − Proxγ

g (x − γ∇f (x))
∥∥ ≤ ε, (4)

where dist(c, C) denotes the distance of a point c to a set C. Since the above condition
is abstract, it is important to identify concrete sufficient conditions under which the Luo-
Tseng error bound condition holds. Moreover, it would be useful to know some scenarios
where the Luo-Tseng error bound condition holds automatically.

Unfortunately, there are only a few cases where the Luo-Tseng error bound condition
holds automatically. First of all, if f is strongly convex, then the Luo-Tseng error bound
condition holds automatically; see [60, Theorem 4]. If f is not strongly convex but sat-
isfy the following structured assumption:1 f (x) = h(Ax) + 〈q, x〉 where A is some given
m × n matrix, q is some given vector in IRn, and h : IRm → (−∞,∞] is a strongly convex
continuously differentiable function, then the Luo-Tseng error bound condition holds auto-
matically provided that g either has a polyhedral epigraph ([60, Lemma 7]) or is the group
LASSO regularizer ([59, Theorem 2]).

Under the strong convexity assumption of h, it is known that the affine mapping x → Ax

is invariant over the solution set and hence the solution set X can be rewritten as

X = {x|Ax = ȳ, −ζ̄ ∈ ∂g(x)}, (5)

1The exact definition of this structured assumption will be given in (Assumption 2) in Section 4.
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where ∂g denotes the subgradient of g, ȳ is a constant and

ζ̄ := AT ∇h(ȳ) + q. (6)

In the recent paper [72], under the structured assumption on f (Assumption 2) and the com-
pactness assumption of the solution set X , the authors show that if the perturbed solution
map

Γ (p1, p2) := {x|p1 = Ax − ȳ, p2 ∈ ζ̄ + ∂g(x)}, (7)

is calm at (0, 0, x̄) for any x̄ ∈ X , then the Luo-Tseng error bound condition (4) holds.
Under this framework, it is shown that a number of existing error bound results in [34, 59,
60, 69] can be recovered in a unified manner.

We say that ∂F (x) = ∇f (x) + ∂g(x) is metrically subregular at (x̄, 0) for x̄ ∈ X if

∃ κ, ε > 0, dist (x,X ) ≤ κdist(0,∇f (x) + ∂g(x)), ∀x ∈ Bε(x̄), (8)

where Bε(x̄) denotes the open ball around x̄ with modulus ε > 0. Very recently, for
problems in the form (1) with both f and g possibly nonconvex, [62] proves the linear con-
vergence of the PGM to a proximal stationary point under the metric subregularity and a
local proper separation condition. The result for the case where g is convex improves the
result of [59] in that only the metric subregularity (8) is required which is in general weaker
than the Luo-Tseng error bound condition (4).

The concept of the metric subregularity of ∂F (x) at (x̄, 0) is equivalent to the calmness
at (0, x̄) of the set-valued map

S(p) := {
x

∣∣ p ∈ ∇f (x) + ∂g(x)
}
,

which is the canonically perturbed solution set represented by its first order condition, i.e.,
S(0) = X = {

x
∣∣ 0 ∈ ∇f (x) + ∂g(x)

}
. The calmness for a set-valued map is a fun-

damental concept in variational analysis; see e.g., [22, 23]. Although the terminology of
“calmness” was coined by Rockafellar and Wets in [53], it was first introduced in Ye and
Ye [64, Definition 2.8] as the pseudo upper-Lipschitz continuity taking into account that the
calmness is weaker than both the pseudo-Lipschitz continuity of Aubin [4] and the upper-
Lipschitz continuity of Robinson [49]. Therefore the calmness condition can be verified by
either the polyhedral multifunction theory of Robinson [51, Proposition 1] or by the Mor-
dukhovich criteria based on the limiting normal cone [36]. More recent sufficient conditions
for calmness include the quasinormality and pseudonormality (see e.g. [20, Theorem 5.2]).
Moreover, recently based on the concept of directional limiting normal cones (see e.g., [18]),
some verifiable sufficient conditions for calmness have been established; see, e.g. [21, The-
orem 1] and [65]. In fact, by the equivalence result (see Proposition 2), (8) is equivalent
to

∃ κ, ε > 0, dist(x,X ) ≤ κ
∥∥x − Proxγ

g (x − γ∇f (x))
∥∥ , ∀x ∈ Bε(x̄). (9)

Condition (8) or equivalently (9) is point-based i.e. the error estimate is only required to
hold for all points near the reference point x̄, while the Luo-Tseng error bound condition (4)
is not. Hence the Luo-Tseng error bound condition (4) is in general stronger than its point-
based counterpart (9). Various results on the linear convergence of PGM are also obtained
in the literature under different kinds of regularity conditions imposed on the subdifferential
mapping of the objective function in (1); see, e.g., [9, 14, 29, 68] with the references and
discussions therein.

In this paper, for the structured convex problem, we will utilize the solution character-
ization (5) and its perturbed map (7) to derive more sufficient conditions for the metric
regularity/calmness condition and identify cases where the condition holds automatically.
We show that the calmness of S(p) at (0, x̄) for x̄ ∈ X is equivalent to the calmness of
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Γ (p1, p2) at (0, 0, x̄). Using the weaker condition (8) allows us to obtain the linear con-
vergence under the structured assumption on the function f (Assumption 2) without the
compactness assumption on the solution set X (see [72, Assumption 2]). Moreover, by
rewriting Γ (p1, p2) as an intersection of the two set-valued maps

Γ1(p1) := {x|p1 = Ax − ȳ}, Γ2(p2) := {x|p2 ∈ ζ̄ + ∂g(x)}, (10)

we propose to use the calm intersection theorem of Klatte and Kummer [27] instead of
using the boundedly linear regularity as suggested in [72, Theorem 2] to verify the calmness
of Γ (p1, p2). The calm intersection theorem takes advantage of nice properties possessed
by Γ1(p1) which represents a solution map of a perturbed linear system. Using the calm
intersection theorem enhances our understanding of error bound conditions for algorith-
mic convergence by Ronbinson’s multifunction theory, and thereby allows us to derive
desired calmness conditions (see Lemma 3). More importantly, the idea behind the calm
intersection theorem inspires us to come up with ways of calculating the modulus for the
calmness/metric subregularity for a wide range of application problems, see, e.g. Section 5.

In contrast to the PGM, the essential difficulties for establishing the linear convergence
of the R-BCPGM are associated with the randomization. For the sequence generated by
the R-BCPGM applied to (2), unfortunately, in general one can hardly expect the sequen-
tial convergence of the generated sequence, see, e.g. [16, 38, 41, 48]. As a consequence,
the aforementioned calmness condition/metric subregularity fails to serve as an appropriate
error bound estimation in that it usually measures the distance from the iterative points to
the solution set for those points near the limiting point. For this reason, [38] established the
expected-value type linear convergence of a parallel version of the R-BCPGM by using a
generalized type of error bound property, while [26] proved the expected-value type linear
convergence of the R-BCPGM under the global Kurdyka–Łojasiewicz (KL) condition with
exponent 1/2 which is equivalent to that the global metric subregularity (see Proposition 2).

Based on a recently developed concept of bounded metric subregularity introduced in
[71], we say that ∂F (x) = ∇f (x) + ∂g(x) is bounded metrically subregular at (x̄, 0) for
x̄ ∈ X if for any bounded set V � x̄,

∃ κ, ε > 0, s.t. dist (x,X ) ≤ κdist(0,∇f (x) + ∂g(x)), ∀x ∈ V . (11)

Note that the modulus κ may depend on the bounded set V and V is arbitrary chosen.
Hence the bounded metric subregularity of ∂F (x) is a weaker concept than the global metric
subregularity but stronger than the point-based metric subregularity condition (8). A very
useful observation is that a polyhedral multifunction is bounded metrically subregular but
not globally metric subregular. In this paper, for the first time we introduce the bounded
metric subregularity condition to the study of the R-BCPGM linear convergence. For the R-
BCPGM, we show that the expected-value type linear convergence holds under the bounded
metric subregularity. We extend the calm intersection theorem of Klatte and Kummer [27]
to the bounded calmness intersection theorem. Under the structured convexity assumption
on f , using the bounded calmness intersection theorem to the perturbed map (7) we obtain
some concrete sufficient condition for bounded metric subregularity/calmness.

We now summarize our contributions as follows:

• For the PGM and PALM, based on the recent result in [62] we obtain the linear con-
vergence under the calmness of S(p) at (0, x̄) (or equivalently the metric subregularity
of ∂F (x) at (x̄, 0)). For the structured convex optimization problem where f has the
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aforementioned convex structure, we use the calm intersection theorem to the set-valued
map Γ and identify three scenarios under which Γ is calm and hence the linear con-
vergence holds. Scenario one is the case where ∂g is a polyhedral multifunction (e.g.,
g is a polyhedral convex regularizer); scenario two is the case where ∂g is a metrically
subregular and Γ2(0) is a convex polyhedral set (e.g. g is the group LASSO regular-
izer); scenario three is the case where ∂g is metrically subregular and the set-valued
map Γ̂ (p1) := Γ1(p1) ∩ Γ2(0) is calm (e.g. g is the indicateor function of a ball).
Compared to the related literature, e.g. [29, 33, 39, 59–61, 69, 72, 73], our approach
leads to some new verifiable sufficient conditions for calmness as well as two improve-
ments, i.e., the compactness assumption of the solution set X is no longer required and,
the calmness modulus for the LASSO, the fused LASSO (see, e.g., [58]), the OSCAR
(see, e.g., [11]), the group LASSO (see, e.g., [17]), the ball constrained problem and
etc. is practically computable. Therefore, the linear convergence rate of the PGM and
PALM for solving a class of structured convex optimization problems can be explicitly
characterized. To the best of our knowledge, these challenging tasks have never been
accomplished in the literature before.

• For the R-BCPGM, we show that the expected-value type linear convergence holds
under the bounded metric subregularity. For the structured convex optimization prob-
lem where f has the aforementioned convex structure, we prove the bounded calm
intersection theorem and apply it to the set-valued map Γ and identify two scenarios
under which Γ is boundedly calm and hence the expected-valued type linear conver-
gence holds. Scenario one is the case where ∂g is a polyhedral multifunction (e.g., g is a
polyhedral convex regularizer); scenario two is the case where ∂g is bounded metrically
subregular and Γ2(0) is a convex polyhedral set (e.g. g is the group LASSO regular-
izer). It follows that the required bounded metric subregularity holds automatically for
some commonly used structured convex optimization problems with separable regu-
larizers studied in [38, 61]. In particular, when g is the group LASSO regularizer, the
required bounded metric subregularity holds automatically and hence the linear conver-
gence of the R-BCPGM for solving the structured convex optimization problem with
the group LASSO model follows. Note that the group LASSO regularizer is a non-
polyhedral regularizer. To our knowledge, these kinds of results have never been given
in the literature before.

In Table 1, we summarize our contributions to the theory of linear convergence for struc-
tured convex optimization problems by comparing some existing results in the literature.
Note that in all results we do not need the compactness assumption on the solution set X ,
which slightly improves [59, 69, 72, 73] as the group LASSO usually induces a unbounded
solution set. Moreover, we introduce an applicable approach to estimate the error bound
modulus, and hence the convergence rate, which significantly improves [29, 33, 39, 59–61,
69, 72, 73]; see Section 4 for details.

It is worth to mention that, [39, 61] have also characterized the linear convergence rates
of the PGM and PALM when g is an indicator function of a convex polyhedral set. How-
ever, the technique in [39, 61] relies heavily on the explicit expression of the polyhedral set
indicated by g, which therefore restricts its extension to applications such as the LASSO,
the fused LASSO, the group LASSO and etc. We also observe that [72] imposes the com-
pactness assumption on X when g is polyhedral convex, while literature prior to [72] did
not require this condition, see, e.g., [33, 39, 60, 61]. Note that this compactness assumption
is restrictive when g is an indicator function of a convex polyhedral set.
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Table 1 Linear rate convergence results

Algorithms/Regularizers polyhedral convex group LASSO ball constraint

PGM [33, 39, 60, 61, 72] & � [59, 69, 72, 73] & � [29] &�
PALM [39, 61] & � [59] & � -

R-BCPGM [26, 38, 61] & ∗ � -

�:the linear convergence result has been established in this paper for the first time.
� : the linear convergence results listed have been improved in this paper.
∗ :the linear convergence result has been recovered in this paper.

2 Preliminaries

Throughout the paper, IRn denotes an n-dimensional Euclidean space with inner-product
〈·, ·〉. The Euclidean norm is denoted by either ‖ · ‖ or ‖ · ‖2. The one norm and the infinity
norm are denoted by ‖x‖1 and ‖x‖∞, respectively. For any matrix A ∈ IRm×n, ‖A‖ :=
maxx �=0

‖Ax‖
‖x‖ and σ̃min(A) denotes the smallest nonzero singular value of A. Br (x) and

Br (x) denote the open and the closed Euclidean norm ball around x with modulus r > 0,
respectively. The open and closed unit ball centred at the origin are denoted by B and B,
respectively. For a given subset C ⊆ IRn, bd C denotes its boundary, dist(c, C) := inf{‖c −
c′‖ ∣∣ c′ ∈ C} denotes the distance from a point c in the same space to C, and δC(x) :={

0 if x ∈ C
∞ if x �∈ C denotes the indicator function of C. Let Φ : IRn ⇒ IRq be a set-valued map

(multifunction), its graph is defined by gph (Φ) := {(x, υ) ∈ IRn × IRq | υ ∈ Φ(x)}. The
inverse mapping of Φ, denoted by Φ−1 is defined by Φ−1(υ) := {x ∈ IRn | υ ∈ Φ(x)}.

2.1 Variational Analysis Background

We start by reviewing some concepts of stability of a set-valued map.

Definition 1 [4] Let Φ : IRn ⇒ IRq be a set-valued map and (x̃, υ̃) ∈ gph(Φ). We say
that Φ is pseudo-Lipschitz continuous at (x̃, υ̃) if there exist a neighborhood V of x̃, a
neighborhood U of υ̃ and κ ≥ 0 such that

Φ (x) ∩ U ⊆ Φ
(
x′) + κ

∥∥x′ − x
∥∥B, ∀x′, x ∈ V.

Definition 2 [49] Let Φ : IRn ⇒ IRq be a set-valued map and x̃ ∈ IRn. We say that Φ is
upper-Lipschitz continuous at x̃ if there exist a neighborhood V of x̃ and κ ≥ 0 such that

Φ (x) ⊆ Φ (x̃) + κ ‖x − x̃‖B, ∀x ∈ V.

Definition 3 [64] Let Φ : IRn ⇒ IRq be a set-valued map and (x̃, υ̃) ∈ gph(Φ). We say that
Φ is calm (or pseudo upper-Lipschitz continuous) at (x̃, υ̃) if there exist a neighborhood V

of x̃, a neighborhood U of υ̃ and κ ≥ 0 such that

Φ (x) ∩ U ⊆ Φ (x̃) + κ ‖x̃ − x‖B, ∀x∈ V.

It is easy to see from the definition that both pseudo-Lipschitz continuity and the upper-
Lipschitz continuity are stronger than the calmness condition. Next we propose a “bounded”
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version of the psedo-Lipschitz continuity that will be useful in this paper. It is obvious that
the “bounded” version is stronger than the original one.

Definition 4 Let Φ : IRn ⇒ IRq be a set-valued map and (x̃, υ̃) ∈ gph(Φ). We say that Φ

is bounded pseudo-Lipschitz continuous at (x̃, υ̃) if for any compact set V � x̃, there exist
a neighborhood U of υ̃ and κ ≥ 0 such that

Φ (x) ∩ U ⊆ Φ
(
x′) + κ

∥∥x′ − x
∥∥B, ∀x′, x ∈ V .

Moreover if the above condition holds with the compact set V replaced by the whole space
IRn, we say that Φ is globally pseudo-Lipschitz continuous at ṽ.

Note that it is easy to verify that in the definition of the calmness above, the neighborhood
V can be taken as the whole space IRn. Hence Φ is calm at (x̃, υ̃) if and only if there exist
a neighborhood U of υ̃ and κ ≥ 0 such that

dist (v,Φ(x̃)) ≤ κdist
(
x̃, Φ−1 (v)

)
, ∀v ∈ U.

Therefore Φ is calm at (x̃, υ̃) if and only if its inverse map Ψ := Φ−1 is metrically
subregular at (υ̃, x̃) ∈ gph (Ψ ) in the following sense.

Definition 5 [13] We say that Ψ : IRq ⇒ IRn is metrically subregular at (υ̃, x̃) ∈ gph (Ψ )

if for some ε > 0 there exists κ ≥ 0 such that

dist
(
υ, Ψ −1 (x̃)

)
≤ κdist (x̃, Ψ (υ)) , ∀υ ∈ Bε(υ̃).

The following bounded version of the metric subregularity introduced by Zhang and Ng
[71] will play an important role.

Definition 6 [71] We say that Ψ : IRq ⇒ IRn is bounded metrically subregular at
(υ̃, x̃) ∈ gph (Ψ ) if for any compact set V such that υ̃ ∈ V , there exists κ ≥ 0 such that

dist
(
υ,Ψ −1 (x̃)

)
≤ κdist (x̃, Ψ (υ)) , ∀υ ∈ V .

Note that in all definitions above, we call the constant κ the modulus.
We next propose the following proposition which is inspired by [15, Proposition 6.1.2].

Proposition 1 For a set-valued map Ψ : IRq ⇒ IRn, if there exist κ, η > 0 such that

dist
(
υ,Ψ −1 (x̃)

)
≤ κdist (x̃, Ψ (υ)) , ∀υ ∈ IRn with dist (x̃, Ψ (υ)) < η, (12)

then for any r > 0 there exists κr > 0 such that

dist
(
υ, Ψ −1 (x̃)

)
≤ κrdist (x̃, Ψ (υ)) , ∀υ ∈ rB. (13)

Recall that a set-valued map is called a polyhedral multifunction if its graph is the union
of finitely many polyhedral convex sets. According to [51, Proposition 1], a polyhedral
multifunction always satisfies condition (12). Thanks to Proposition 1, (12) implies (13)
and hence a polyhedral multifunction must be bounded metrically subregular at every point
in the graph of the set-valued map.
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2.2 Interplay Between Regularity Conditions

In order to facilitate our discussion, we first summarize the interplay between some popular
regularity conditions. In particular, since F is continuous on domF , the equivalence among
the following four conditions is provable. Note that in this paper, we will add “global” to a
condition if the condition holds for all x ∈ IRn.

Proposition 2 Given a point x̄ ∈ X , the following conditions are equivalent.

1) Metric subregularity: There exist κ, ε > 0 such that

dist (x,X ) ≤ κdist(0, ∂F (x)), ∀x ∈ Bε(x̄).

2) Proximal error bound: For any γ > 0, there exist κ, ε > 0 such that

dist (x,X ) ≤ κ

∥∥∥x − (I + γ ∂g)−1 (x − γ∇f (x))

∥∥∥ , ∀x ∈ Bε(x̄) ∩ domF,

where I is the identity matrix of size n × n.
3) Kurdyka–Łojasiewicz (KL) property with exponent 1

2 : There exist κ, ε, r > 0 such that

κ (F (x) − F(x̄))−
1
2 dist(0, ∂F (x)) ≥ 1, ∀x ∈ Bε(x̄)∩{x | F(x̄) < F(x) < F(x̄)+r}.

4) Quadratic growth condition: There exist κ, ε > 0 such that

F(x) ≥ F(x̄) + κdist2 (x,X ) , ∀x ∈ Bε(x̄).

Proof 1) ⇔ 2), see [14, Theorem 3.4, Theorem 3.5]. 3) ⇔ 4), see [9, Theorem 5, Corollary
6]. 1) ⇒ 3), see [68, Theorem 1]. 4) ⇒ 1), see [2, Theorem 3.3] or [3, Theorem 2.1].

In accordance with the bounded metric subregularity, naturally we may introduce some
“bounded” versions of the proximal error bound, the KL property with exponent 1

2 and
the quadratic growth condition respectively. The proof for the equivalence reviewed in
Proposition 2 can be trivially extended to that in Proposition 3.

Proposition 3 Let V = BR0 (x̄) ∩ {x | F(x) ≤ F(x̄) + r0}, where x̄ is a point in X ,
R0 ∈ (0,+∞] and r0 ∈ (0,+∞). Then the following are equivalent:

1) Bounded metric subregularity: There exists κ > 0 such that

dist (x,X ) ≤ κdist(0, ∂F (x)), ∀x ∈ V .

2) Bounded proximal error bound: For any γ > 0, there exists κ > 0 such that

dist (x,X ) ≤ κ

∥∥∥x − (I + γ ∂g)−1 (x − γ∇f (x))

∥∥∥ , ∀x ∈ V .

3) Bounded KL property with exponent 1
2 : There exists κ > 0 such that

κ (F (x) − F(x̄))−
1
2 dist(0, ∂F (x)) ≥ 1, ∀x ∈ V ∩ {x | F(x̄) < F(x)}.

4) Bounded quadratic growth condition: There exists κ > 0 such that

F(x) ≥ F(x̄) + κdist2 (x,X ) , ∀x ∈ V .
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3 First-Order Methods and Linear Convergence Rates

This section is divided into two parts. In the first part, we briefly analyse the linear con-
vergence of the two deterministic methods, i.e., the PGM and PALM under the metric
subregularity of ∂F . In the second part, we prove the expected-value type linear convergence
of the R-BCPGM under the bounded metric subregularity of ∂F .

3.1 Linear Convergence of the PGM and PALMUnder theMetric Subregularity

Recall that the iteration scheme of the PGM applied to problem (1) can be rewritten as

xk+1 = (I + γ ∂g)−1
(
xk − γ∇f (xk)

)
.

The following result follows directly from [32] and [62].

Proposition 4 (Linear convergence of the PGM under the metric subregularity) ([32, The-
orem 3.3], [62, Theorems 3.2 and 4.2]) Assume that the step-size γ in the PGM as in
Algorithm 1 satisfies γ < 1

L
. Let {xk} be the sequence generated by the PGM, and xk con-

verges to x̄ ∈ X . Suppose that ∂F is metrically subregular at (x̄, 0). Then the sequence xk

converges to x̄ ∈ X linearly with respect to the sequence of objective function values, i.e.,
there exist k0 > 0 and σ ∈ (0, 1), such that for all k ≥ k0, we have

F(xk) − F ∗ ≤ σk
(
F(x0) − F ∗) , ∀k = 0, 1, 2, · · · .

Moreover we have for all k ≥ k0, ∥∥∥xk − x̄

∥∥∥ ≤ ρ0ρ
k,

for certain ρ0 > 0, 0 < ρ < 1.

The linear convergence of PALM was established in [10, Theorem 1 and Remark 6] if F

satisfies KL property with exponent 1
2 on X and the set of all limiting points of the iteration

sequence is bounded. However, according to the proof of [10, Theorem 1], the KL property
with exponent 1

2 on a specific point x̄ ∈ X and boundedness of the iteration sequence
suffice to guarantee the linear convergence of PALM toward x̄. So we slightly modify the
result and summarize it in the following proposition. Note that according to Proposition 2,
the metric subregularity of ∂F at (x̄, 0) is equivalent to the KL property with exponent 1

2 of
F at x̄. We therefore state the linear convergence result under the metric subregularity.

Proposition 5 (Linear convergence of PALM under the metric subregularity) If F(x) =
f (x1, x2, . . . , xN) + ∑N

i=1 gi(xi), and let {xk} be the sequence generated by PALM algo-
rithm in Algorithm 2, and xk converges to x̄ ∈ X . Assume that ∂F is metrically subregular
at (x̄, 0). Then the sequence xk converges to x̄ linearly, i.e., there exist k0 > 0 and
ρ0 > 0, 0 < ρ < 1, such that for all k ≥ k0, we have∥∥∥xk − x̄

∥∥∥ ≤ ρ0ρ
k .

Remark 1 The constants σ , ρ, ρ0 in the linear convergence rate of the PGM toward x̄ given
in Proposition 4 is closely related to the modulus of the metric subregularity of ∂F at (x̄, 0).
In fact, when the modulus of the metric subregularity of ∂F is known, the linear convergence
rate of the PGM can be characterized in terms of the modulus, see, e.g., [62, Theorems
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3.2 and 4.2] together with [14, Theorem 3.4, Theorem 3.5] for details. Similarly, the linear
convergence rate of PALM can also be characterized explicitly by the modulus of the metric
subregularity of ∂F , see, e.g., [10, Theorem 1 and Remark 6] together with [68, Theorem 1].

3.2 Linear Convergence of the R-BCPGMUnder the BoundedMetric Subregularity

Definition 7 (R-BCPGM-iteration-based error bound) Let
{
xk

}
be an iteration sequence

generated by the R-BCPGM method. We say that the R-BCPGM-iteration-based error
bound holds for

{
xk

}
if there exists κ such that

dist
(
xk+1,X

)
≤ κ

∥∥∥∥xk − (I + 1

C
∂g)−1

(
xk − 1

C
∇f (xk)

)∥∥∥∥ , for all k, (14)

where C := supk{ck
ik
}.

We are now ready to illustrate our main result in this section. The proof of linear con-
vergence will rely heavily on a technical result developed in [26, Theorem 6]. Instead of
using the global KL property with exponent 1/2 which is equivalent to the global metric
subregularity (see Proposition 2) as in [26, Theorem 6], we employ the bounded metric sub-
regularity and show the boundedness of the generated sequence. For succinctness, we give
the detail of the proof in Appendix.

Theorem 1 (Linear convergence of the R-BCPGM under the R-BCPGM-iteration-based
error bound) Suppose that F(x) = f (x1, x2, . . . , xN) + ∑N

i=1 gi(xi) and {xk} is an itera-
tion sequence generated by the R-BCPGM as in Algorithm 3 and the R-BCPGM-iteration-
based error bound holds for {xk}. Then the R-BCPGM achieves a linear convergence rate
in terms of the expected objective function value, i.e., there exists σ ∈ (0, 1) such that

E[F(xk) − F ∗] ≤ σk(F (x0) − F ∗), ∀k = 0, 1, 2, · · · .

The R-BCPGM-iteration-based error bound condition, however, depends on the iteration
sequence. We now give some sufficient conditions for the R-BCPGM-iteration-based error
bound condition that are independent of the iteration sequence. The equivalence between
the bounded metric subregularity and the bounded KL property with exponent 1

2 presented
in Proposition 3 immediately yields the following corollary.

Corollary 1 (Linear convergence of the R-BCPGM under the bounded metric subregular-
ity) Assume that F(x) = f (x1, x2, . . . , xN) + ∑N

i=1 gi(xi), and ∂F is bounded metrically
subregular at (x̄, 0) for some point x̄ ∈ X . Suppose that the sequence {xk} generated by the
R-BCPGM is bounded. Then the R-BCPGM achieves a linear convergence rate in terms of
the expected objective value for any iteration sequence generated by the algorithm.

Proof By assumption, there exist some r0 > 0, R0 > 0 such that {xk} ⊆ V , where V =
BR0 (x̄)∩{x | F(x) ≤ F(x̄)+ r0}. By definition, since ∂F is bounded metrically subregular
at (x̄, 0) we have

dist (x,X ) ≤ κdist(0, ∂F (x)), ∀x ∈ V .

By Proposition 3 it follows that for γ = 1/C, there exists κ̃ > 0 such that

dist (x,X ) ≤ κ̃

∥∥∥x − (I + γ ∂g)−1 (x − γ∇f (x))

∥∥∥ , ∀x ∈ V .
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It follows that the R-BCPGM-iteration-based error bound holds for
{
xk

}
and hence the

result follows from Theorem 1.

In the rest of this section we give a sufficient condition for the boundedness of the iter-
ation sequence. Since the subproblem in each iteration of R-BCPGM with given block
is same as the one of PALM, we can have following lemma from [6, Lemma 11.9] or
[54, Lemma 3.1] easily.

Lemma 1 If F(x) = f (x1, x2, . . . , xN) + ∑N
i=1 gi(xi), let {xk} be a sequence generated

by the R-BCPGM. Then {F(xk)} must be bounded.

According to Lemma 1, if F is level bounded, i.e. {x | F(x) ≤ F(x0)} is bounded,
then the sequence {xk} generated by the R-BCPGM must be bounded as well. We now
summerize our discussion above in the following result.

Corollary 2 Assume that F(x) = f (x1, x2, . . . , xN)+∑N
i=1 gi(xi) and F is level bounded

and ∂F is bounded metrically subregular at (x̄, 0) for some x̄ ∈ X . Then the R-BCPGM
achieves a linear convergence rate in terms of the expected objective function value for any
iteration sequence generated by the algorithm.

4 Verifying Subregularity Conditions for Structured ConvexModels

We have shown in Section 3 that the PGM applied to (1) and PALM applied to (1) with
g having block separable structure converge linearly under the metric subregularity of ∂F .
Suppose further that ∂F is bounded metrically subregular, we have proved the linear con-
vergence for the R-BCPGM for solving (2). In this section, we shall study the metric
subregularity and the bounded metric subregularity of ∂F . Moreover, for those applications
which satisfy the metric subregularity, we shall also propose an approach to estimate the
metric subregularity modulus of ∂F . For this purpose, we concentrate on an important cat-
egory of optimization problem (1) (including (2) with underlying structure) which satisfies
the following assumption.

Assumption 2 (Structured Properties of the Function f ) f : IRn → (−∞,∞] is a function
of the form

f (x) = h(Ax) + 〈q, x〉,
where A is some m×n matrix, q is some vector in IRn, and h : IRm → (−∞,∞] is a convex
proper lsc function with following properties:

(i) h is strongly convex on any convex compact subset of domh.
(ii) h is continuously differentiable on domh which is assumed to be open and ∇h is

Lipschitz continuous on any compact subset C ⊆ domh.

Some commonly used loss functions in machine learning such as linear regression, logis-
tic regression and Poisson regression automatically satisfy the above assumptions. We next
verify the desirable metric subregularity conditions under Assumption 2. In order to present
our results more clearly, we summarize the roadmap of analysis in Fig. 1. Note that in Fig. 1,



J.J. Ye et al.

Fig. 1 Roadmap to study linear convergence

M.S. and B.M.S. denote metric subregularity and bounded metric subregularity, respec-
tively; the formula of set-valued map Γ is given in (7) and Γ̂ (p1) := Γ1(p1)∩Γ2(0), where
both Γ1 and Γ2 are given in (10).

Thanks to the strong convexity of h, the following lemma follows from [33, Lemma
2.1] which shows that the affine mapping x → Ax is invariant over X . It improves [72,
Proposition 1] in that no compactness assumption on X is required.

Lemma 2 Under Assumption 2, there exist ȳ ∈ IRm, ζ̄ ∈ IRn defined as in (6) such that
X = {x|Ax = ȳ, 0 ∈ ζ̄ + ∂g(x)}.

Proof Since the functions f, g are convex and h is continuous differentiable on the domain
of f , by the optimality condition and the chain rule, we have

X = {x ∈ IRn|0 ∈ AT ∇h(Ax) + q + ∂g(x)}.
By [33, Lemma 2.1], there exists ȳ ∈ IRm such that Ax = ȳ for all x ∈ X . The result then
follows.

Proposition 6 Assume that Assumption 2 is satisfied. Then the bounded metric subregular-
ity conditions of Γ −1 and S−1 are equivalent. Precisely, given x̄ ∈ X , and a compact set
V ⊆ domF such that x̄ ∈ V , the following two statements are equivalent:

(i) There exists κ1 > 0 such that dist (x, Γ (0, 0)) ≤ κ1dist
(
0, Γ −1 (x)

)
,∀x ∈ V .

(ii) There exists κ2 > 0 such that dist (x,S(0)) ≤ κ2dist
(
0,S−1 (x)

)
, ∀x ∈ V .

Proof Given x̄ ∈ X and a compact set V such that x̄ ∈ V , suppose that there exists κ1 > 0
such that dist (x, Γ (0, 0)) ≤ κ1dist

(
0, Γ −1 (x)

)
for all x ∈ V . For any x ∈ V and any



Linear Convergence for Convex Optimization via Variational Analysis

ξ ∈ ∇f (x) + ∂g(x), by the Lipschitz continuity of ∇h as in Assumption 2, there exists
Lh > 0 such that

dist (x,X ) = dist (x, Γ (0, 0)) ≤ κ1dist
(

0, Γ −1 (x)
)

≤ κ1
(‖Ax − ȳ‖ + ‖ξ − ∇f (x) + ζ̄‖)

≤ κ1

(
‖Ax − ȳ‖ + ‖AT ∇h(Ax) − AT ∇h(ȳ)‖ + ‖ξ‖

)
≤ κ1(1 + ‖A‖Lh)‖Ax − ȳ‖ + κ1‖ξ‖. (15)

Let x̂ be the projection of x on X , since 0 ∈ ζ̄ + ∂g(x̂) and ∂g is monotone, we have

〈ξ − ∇f (x) + ζ̄ , x − x̂〉 ≥ 0.

Moreover, since ζ̄ = AT ∇h(ȳ) + q and Ax̂ = ȳ, thanks again to the strong convexity of h,
we can find σ > 0 such that

σ‖Ax − ȳ‖2 ≤ 〈∇h(Ax)−∇h(ȳ), Ax − ȳ〉 ≤ 〈ξ, x − x̂〉 ≤ ‖ξ‖‖x − x̂‖ = ‖ξ‖dist (x,X ) .
(16)

Upon combining (15) and (16), we obtain

dist (x,X ) ≤ κ1(1 + ‖A‖Lh)√
σ

√‖ξ‖dist (x,X ) + κ1‖ξ‖.

Consequently,
dist (x,X ) ≤ κ̃‖ξ‖,

where

κ̃ := κ1 + 2c2 + 2c
√

κ1 + c2 > 0 with c := κ1(1 + ‖A‖Lh)

2
√

σ
.

Because ξ is arbitrarily chosen in ∇f (x) + ∂g(x),

dist (x,S(0)) = dist (x,X ) ≤ κ̃dist
(

0,S−1 (x)
)

.

Hence, there exists a κ2 = κ̃ > 0 such that dist (x,S(0)) ≤ κ2dist
(
0,S−1 (x)

)
for all

x ∈ V .
Conversely, given x̄ ∈ X and a set compact V such that x̄ ∈ V , suppose that there exists

a κ2 > 0 such that dist (x,S(0)) ≤ κ2dist
(
0,S−1 (x)

)
for all x ∈ V . For any fixed x ∈ V

and (p1, p2) ∈ Γ −1 (x), it follows that

p1 = Ax − ȳ,

p2 ∈ AT ∇h(ȳ) + q + ∂g(x).

To summarize,

p2 + AT ∇h(Ax) − AT ∇h(Ax − p1) ∈ AT ∇h(Ax) + q + ∂g(x).

By virtue of the Lipschitz continuity of ∇h, there exists Lh > 0 such that

dist (x,X ) = dist (x,S(0)) ≤ κ2dist
(

0,S−1 (x)
)

≤ κ2‖p2 + AT ∇h(Ax) − AT ∇h(Ax − p1)‖
≤ κ2‖A‖Lh‖p1‖ + κ2‖p2‖.

Moreover, since (p1, p2) can be any element in Γ −1 (x), we have

dist (x, Γ (0, 0)) = dist (x,X ) ≤ κ2(‖A‖Lh + 1)dist
(

0, Γ −1 (x)
)

.



J.J. Ye et al.

Therefore, there exists κ1 = κ2(‖A‖Lh + 1) > 0 such that dist (x, Γ (0, 0)) ≤
κ1dist

(
0, Γ −1 (x)

)
for all x ∈ V .

Observe that if the solution set X is compact, then Γ is calm at every point (0, 0, x̄)

where x̄ ∈ X if and only if there exist κ > 0, ρ > 0 such that

dist (x,X ) ≤ κdist
(
x, Γ −1(x)

)
= κ (‖Ax − ȳ‖ + dist (v̄, ∂g(x))) ∀x with dist(x,X ) ≤ ρ.

The above condition is actually the so-called “EBR” condition in [72]. Hence from Propo-
sition 6 one can obtain [72, Proposition 4] but not vice versa. Since we do not assume the
compactness of the solution set X , this result improves the result in [72, Proposition 4].

We then concentrate on the metric subregularity of Γ −1 and conduct our analysis sys-
tematically according to different application-driven scenarios of ∂g. Given x̄ ∈ X , we
will show the following results regarding metric subregularity. In fact, when A is of full
column rank, straightforwardly F is strongly convex, which implies that S−1 is metrically
subregular at (x̄, 0), and thus, Γ −1 should be metrically subregular at (x̄, 0, 0). We are
interested in the nontrivial cases of scenarios 1 - 3, where A is not of full column rank.

Scenario 1. If ∂g is a polyhedral multifunction, then Γ −1 is bounded metrically subregu-
lar at (x̄, 0, 0).

Scenario 2. If ∂g is bounded metrically subregular (not necessarily a polyhedral mul-
tifunction) at any (x̄, v̄) ∈ gph (∂g), then Γ −1 is bounded metrically
subregular at (x̄, 0, 0) provided that Γ2(0) is a convex polyhedral set.

Scenario 3. If ∂g is metrically subregular (not necessarily bounded metrically subregu-
lar) at any (x̄, v̄) ∈ gph (∂g), then Γ −1 is metrically subregular at (x̄, 0, 0)

provided that Γ̂ (p1) := Γ1(p1) ∩ Γ2(0) is calm at (0, x̄).

In particular, for each scenario, we will first delineate how to prove the theoretical argu-
ments. We will also classify some popular models in statistics and machine learning as
applications in accordance with scenarios 1-3.

4.1 Scenario 1: ∂g is Polyhedral Multifunction

In this scenario, f satisfies Assumption 2 and ∂g is a polyhedral multifunction. In this case
Γ is a polyhedral multifunction and hence Γ −1 is also a polyhedral multifunction. Con-
sequently, Γ satisfies condition (12) at (p1, p2) for any point (x, p1, p2) ∈ gph(Γ −1)

according to the polyhedral multifunction theory of Robinson [51, Proposition 1]. There-
fore, Γ −1 is bounded metrically subregular at (x, p1, p2) by Proposition 1. According to
Proposition 6, S−1 is bounded metrically subregular at (x̄, 0) for any given x̄ ∈ X . Theorem
2 summarizes our discussion above.

Theorem 2 Suppose that f satisfies Assumption 2 and ∂g is a polyhedral multifunction.
Then ∂F is bounded metrically subregular at (x̄, 0) for any given x̄ ∈ X .

According to the equivalence theorem in Proposition 3, a consequence of Theorem 2 is
that for convex problems with convex piecewise linear-quadratic regularizes, the objective
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function must satisfy KL property with exponent 1
2 without the compactness assumption of

the solution set X as in [29, Proposition 4.1].
It is interesting to see that although ∂F is not necessarily a polyhedral multifunction,

through Γ we can verify that ∂F is not only metrically subregular but also bounded
metrically subregular at (x̄, 0) for given x̄ ∈ X .

Application of Scenario 1 polyhedral convex or piecewise quadratic function

Proposition 7 Let g : IRn → (−∞,∞] be convex, proper lsc and continuous on domg.
Then ∂g is a polyhedral multifunction if one of following conditions hold:

(i) g is a polyhedral convex function (see e.g. [52] for a definition), which includes the
indicator function of a polyhedral set and the polyhedral convex regularizer.

(ii) g is convex piecewise linear-quadratic function (see e.g. [53, Definition 10.20] for a
definition).

In particular, the proof for the polyhedral convex case in Proposition 7(i) can be referred
to [50, Proposition 3]. This case covers scenarios where g is the LASSO regularizer (see,
e.g., [57]), the l∞−norm regularizer, the fused LASSO regularizer (see, e.g., [58]), the
octagonal selection and clustering algorithm for regression (OSCAR) regularizer (see, e.g.,
[11]). The definitions of these polyhedral convex regularizers are summarized in Table 2,
where λ, λ1 and λ2 are given nonnegative parameters.

4.2 Scenario 2: ∂g is BoundedMetrically Subregular

In this scenario, f satisfies Assumption 2 and ∂g is bounded metrically subregular, not nec-
essarily a polyhedral multifunction. In this case, since Γ is not a polyhedral multifunction,
it is not automatically bounded metrically subregular. Note that Γ (p1, p2) is the intersec-
tion of two set-valued maps Γ1(p1) and Γ2(p2) and the system in Γ1(0) is linear and hence
the set-valued map Γ −1

1 is bounded metrically subregular at any point in its graph. If the set-
valued map Γ −1

2 is bounded metrically subregular as well, can one claim that the set-valued
map Γ −1 is bounded metrically subregular? The answer is negative unless some additional
information is given. Here we construct a counter-example to show it is possible that the
desired bounded metric subregularity of Γ −1 fails to hold while Γ −1

2 is bounded metrically
subregular.

Example 1 Consider the following ball constrained optimization problem where x ∈ R
2,

min
x

F (x) := 1

2
(x2 − 1)2 + δ

B
(x). (17)

It can be easily calculated that x̄ = (0, 1) is the only point in solution set,

Γ2(p2) = {x | p2 ∈ ∂δ
B
(x)},

Table 2 Polyhedral convex regularizers

Regularizers LASSO l∞−norm fused LASSO OSCAR

g(x) λ‖x‖1 λ‖x‖∞ λ1‖x‖1 + λ2
∑
i

|xi − xi+1| λ1‖x‖1 + λ2
∑
i<j

max{|xi |, |xj |}
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and

Γ (p1, p2) = {x | p1 = (0, x2) − (0, 1), p2 ∈ ∂δ
B
(x)}.

It should be noted that Γ −1
2 (x) = ∂δ

B
(x) is bounded metrically subregular at (x̄, 0) (see,

e.g., Lemma 6). However, the metric subregularity of Γ −1 does not hold. Indeed, we may
consider the sequence

(xk
1 , xk

2 ) = (cos(θk), sin(θk)), with θk ∈ (0,
π

2
), θk → π/2,

and

pk
1 = (0, sin(θk) − 1), pk

2 = 0.

Then we have xk ∈ Γ (pk
1, pk

2) and xk → (0, 1). Since

dist(xk, Γ (0, 0)) = dist(xk, {(0, 1)})
=

√
cos2(θk) + (sin(θk) − 1)2

=
√

2 − 2 sin(θk),

it follows that

dist(xk, Γ (0, 0))

dist(0, Γ −1(xk))‖ ≥ dist(xk, Γ (0, 0))

‖0 − (pk
1, pk

2)‖ =
√

2

1 − sin(θk)
→ ∞.

Hence Γ −1 is not metrically subregular at (x̄, 0).

The following proposition represents a “bounded” version of the “calm intersection theo-
rem” initiated in [27, Theorem 3.6]; see also Proposition 9. It can be used to derive concrete
sufficient conditions under which Γ (p1, p2) is bounded metrically subregular.

Proposition 8 (Bounded metric subregular intersection theorem) Let T1 : IRq1 ⇒ IRn,
T2 : IRq2 ⇒ IRn be two set-valued maps. Define set-valued maps

T (p1, p2) := T1(p1) ∩ T2(p2),

T̂ (p1) := T1(p1) ∩ T2(0).

Given x̃ ∈ T (0, 0), suppose that T −1
1 is bounded metrically subregular and bounded

pseudo-Lipschitz at (x̃, 0), and T −1
2 is bounded metrically subregular (x̃, 0). Then T −1

is bounded metrically subregular at (x̃, 0, 0) if and only if T̂ −1 is bounded metrically
subregular at (x̃, 0).

Proof Since the bounded metric subregularity of T −1 at (x̃, 0, 0) implies that of T̂ −1 at
(x̃, 0) trivially, it suffices to show that the bounded metric subregularity of T̂ −1 at (x̃, 0)

implies that of T −1 at (x̃, 0, 0).
Suppose that T̂ −1 is bounded metrically subregular at (x̃, 0). Given any compact set V

such that x̃ ∈ V . Suppose that κ1 > 0 and κ2 > 0 are the modulus for the bounded metric
subregularity of T −1

1 and T −1
2 at (x̃, 0), respectively. Then there exist κ := max{κ1, κ2}

such that for any x ∈ V and x ∈ T (p1, p2) = T1(p1)∩T2(p2) with max{‖p1‖, ‖p2‖} < σ ,
we can find x′ ∈ T1(0), x′′ ∈ T2(0) satisfying

max{dist(x, x′), dist(x, x′′)} ≤ κ max{dist(0, p1), dist(0, p2)}.
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Moreover, suppose that L̃ > 0 is the modulus for the bounded pseudo-Lipschitz continuity
of T −1

1 at (x̃, 0) for the bounded set V + κσB. Since 0 ∈ T −1
1 (x′), x′, x′′ ∈ V + κσB, and

p′
1 ∈ T −1

1 (x′′), we have

dist(0, p′
1) ≤ L̃ dist(x′, x′′).

Note that L̃ > 0 is independent of x and only dependent on V, κ, σ . Suppose that for the
given V , the modulus of the bounded metric subregularity for T̂ −1 at (x̃, 0) is κT > 0. Then
since x′′ ∈ T1(p

′
1) ∩ T2(0) = T̂ (p′

1), and ξ ∈ T̂ (0) = T (0, 0), we have

dist(x′′, ξ) ≤ κT dist(0, p′
1).

By the inequalities proven above, we have

dist(x, ξ) ≤ dist(x′′, x) + dist(x′′, ξ)

≤ κ max{dist(p1, 0), dist(p2, 0)} + κT dist(p′
1, 0)

≤ κ max{dist(p1, 0), dist(p2, 0)} + κT L̃ dist(x′, x′′)
≤ (1 + 2κT L̃)κ max{dist(p1, 0), dist(p2, 0)}.

In summary, for any compact set V such that x̃ ∈ V , there exists a positive constant

κ̃ := 1 + 2κT L̃,

where L̃ is the modulus for the bounded pseudo-Lipschitz continuity of T −1
1 for the bounded

set V + κσB, κT is the modulus for the bounded metric subregularity of T̂ −1, and a
neighborhood U of (0, 0) such that

dist (x, T (0, 0)) ≤ κ̃ dist
(

0, T −1 (x) ∩ U

)
, ∀x ∈ V,

i.e., T −1 is bounded metrically subregular at (x̃, 0, 0).

The bounded metric subregular intersection theorem in Proposition 8 plays a key role
in our investigation in the sense that it provides a verifiable equivalent condition for the
bounded metric subregularity of a multifunction with underlying structures. Before we can
show the bounded metric subregularity of Γ (p1, p2) by the bounded metric subregular
intersection theorem, we need the following lemma as a preparation.

Lemma 3 For the set-valued map Γ1(p1) = {x | p1 = Ax − ȳ} and any point (p̄1, x̄) ∈
gph Γ1, Γ −1

1 is bounded metrically subregular at (x̄, p̄1), and globally pseudo-Lipschitz
continuous at p̄1 with modulus ‖A‖.

Proof First, since Γ −1
1 (x) = Ax−ȳ is a polyhedral multifunction, according to Proposition

1, Γ −1
1 is bounded metrically subregular at (x̄, p̄1) with modulus 1

σ̃min(A)
, where σ̃min(A)

denotes the smallest nonzero singular value of A. (see, e.g. [24] or Lemma 7). Moreover,
for any x′, x′′ ∈ IRn, we have

‖Γ −1
1 (x′) − Γ −1

1 (x′′)‖ ≤ ‖A‖‖x′ − x′′‖.

By Definition 4, Γ −1
1 is globally pseudo-Lipschitz continuous at p̄1 with modulus ‖A‖.

The underlying property of Γ1 which represents a perturbed linear system allows us to
use the bounded metric subregular intersection theorem to characterize the bounded metric
subregularity of ∂F . In terms of the bounded metric subregular intersection theorem, the
bounded metric subregularity of ∂F is equivalent to the bounded metric subregularity of



J.J. Ye et al.

a linear system 0 = Ax − ȳ perturbed on an abstract set Γ2(0). This underlying property
was neglected in [72]. However, this discovery is insightful as it reveals an important fact
that the (bounded) metric subregularity conditions are automatically satisfied for certain
structured convex problems because nothing else but the celebrated Robinson’s polyhedral
multifunction theory is needed, see, e.g., Theorem 3 and Corollary 3. In particular, upon
combining Proposition 8 and Lemma 3, we obtain the main result in this part.

Theorem 3 Suppose that f satisfies Assumption 2, ∂g is bounded metrically subregular at
(x̄, −ζ̄ ) where x̄ ∈ X and ζ̄ is defined as in (6). If Γ2(0) = {x|0 ∈ ζ̄ + ∂g(x)} is a convex
polyhedral set, then ∂F is bounded metrically subregular at (x̄, 0).

Proof According to Proposition 6, S−1 = ∂F is bounded metrically subregular at (x̄, 0) if
and only if Γ −1 is bounded metrically subregular at (x̄, 0, 0). So it suffices to show that Γ −1

is bounded metrically subregular at (x̄, 0, 0) by using the bounded metrically subregular
intersection theorem in Proposition 8.

First by Lemma 3, Γ −1
1 is bounded metrically subregular at (x̄, 0), and globally pseudo-

Lipschitz continuous at 0. Secondly by assumption, Γ −1
2 (x) = ζ̄ + ∂g(x) is bounded

metrically subregular at (x̄, 0). Since Γ2(0) is a convex polyhedral set, Γ̂ (p1) := Γ1(p1) ∩
Γ2(0) is a polyhedral multifunction. Hence, Γ̂ satisfies condition (12) at (0, x̄) according
to the polyhedral multifunction theory of Robinson [51, Proposition 1]. Thanks to Proposi-
tion 1, Γ̂ −1 is bounded metrically subregular at (x̄, 0). Therefore, by virtue of Proposition
8, Γ −1 is bounded metrically subregular at (x̄, 0, 0) and the proof of the theorem is
completed.

Application of Scenario 2 group LASSO regularizer
Now as an application of scenario 2 we consider the group LASSO regularizer, i.e.,

g(x) := ∑
J∈J ωJ ‖xJ ‖2, where ωJ ≥ 0 and J is a partition of {1, . . . , n}. Throughout this

paper we assume that the index set J1 := {J |wJ > 0 is a nonempty. The group LASSO was
introduced in [66] in order to allow predefined groups of covariates J to be selected into or
out of a model together. In general ∂g is not a polyhedral multifunction unless g degenerates
to the LASSO regularizer. Note that as ωJ is allowed to be zero for some J ∈ J , the
solution set X to the group LASSO is not necessarily compact. Reference [72], however,
requires such compactness assumption which is restrictive in some practice.

In this part, we will first show that the group LASSO falls into the category of scenario 2.
The following lemma is an improvement of [72, Proposition 8] which proved that ∂‖ · ‖2 is
metrically subregular at (x̄, v̄). Although the proof may look similar to [72, Proposition 8],
we need to provide the detailed proof here since we are proving a stronger condition, i.e.,
the bounded metric subregularity. Moreover, we shall need the detailed characterization of
the metric subregularity modulus for further discussion.

Lemma 4 Let (x̄, v̄) ∈ gph ∂‖ · ‖2. Then ∂‖ · ‖2 is bounded metrically subregular at (x̄, v̄)

with modulus κ = M
1−‖v̄‖ if ‖v̄‖ < 1 and κ = M if ‖v̄‖ = 1.

Proof Given an arbitrary bounded set V such that x̄ ∈ V , there exists M > 0 such that
‖x‖ ≤ M for all x ∈ V . Recall that

∂‖x‖2 =
{

x/‖x‖ if x �= 0
B if x = 0.
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Hence (x̄, v̄) ∈ gph ∂‖ · ‖2 implies that ‖v̄‖ ≤ 1. Consider first the case when ‖v̄‖ < 1.
Then (∂‖ · ‖2)

−1(v̄) = {0} in this case. Thus,

dist
(
x, (∂‖ · ‖2)

−1(v̄)
)

= ‖x‖ ≤ M, ∀x ∈ V,

and

dist (v̄, ∂‖x‖2) ≥ 1 − ‖v̄‖ > 0, ∀x ∈ V \{0}.
Therefore

dist
(
x, (∂‖ · ‖2)

−1(v̄)
)

≤ M

1 − ‖v̄‖ (1 − ‖v̄‖) ≤ M

1 − ‖v̄‖dist (v̄, ∂‖x‖2) ,∀x ∈ V \{0}.

Since dist
(
0, (∂‖ · ‖2)

−1(v̄)
) = 0, it follows that

dist
(
x, (∂‖ · ‖2)

−1(v̄)
)

≤ M

1 − ‖v̄‖dist (v̄, ∂‖x‖2) ,∀x ∈ V . (18)

Next we consider the case when ‖v̄‖ = 1. In this case (∂‖ · ‖2)
−1(v̄) ⊆ {αv̄ | α > 0} and

hence

dist
(
x, (∂‖ · ‖2)

−1(v̄)
)

≤ ‖x − ‖x‖ · v̄‖ = ‖x‖‖ x

‖x‖ − v̄‖, ∀x ∈ V,

and thus

dist
(
x, (∂‖ · ‖2)

−1(v̄)
)

≤ ‖x‖dist (v̄, ∂‖x‖2) ≤ Mdist (v̄, ∂‖x‖2) ,∀x ∈ V \{0}.

Again since dist
(
0, (∂‖ · ‖2)

−1(v̄)
) = 0, it follows that

dist
(
x, (∂‖ · ‖2)

−1(v̄)
)

≤ Mdist (x̄, ∂‖x‖2) , ∀x ∈ V . (19)

Combining (18) and (19), we conclude that

dist
(
x, (∂‖ · ‖2)

−1(v̄)
)

≤ κdist (v̄, ∂‖x‖2) , ∀x ∈ V,

where κ := M
1−‖v̄‖ if ‖v̄‖ < 1 and κ := M if ‖v̄‖ = 1, i.e., ∂‖ · ‖2 is bounded metrically

subregular at (x̄, v̄).

Lemma 5 Let g(x) := ∑
J∈J ωJ gJ (xJ ), where ωj ≥ 0, gJ (xJ ) : IR|J | → IR is a convex

function and J is a partition of {1, . . . , n}. Then ∂g is bounded metrically subregular at
any (x̄, v̄) ∈ gph ∂g with modulus κ = maxJ∈J+

κv̄J /ωJ

ωJ
with J+ := {J | ωJ > 0}, if each

∂gJ is bounded metrically subregular at (x̄J , v̄J /ωJ ) for any ωJ > 0 with modulus κv̄J /ωJ
.

Proof Since each gJ is a convex function and ωJ ≥ 0, we have

∂g(x) =
∏
J∈J

ωJ ∂gJ (xJ ),
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where �J∈J CJ denotes the Cartesian product of sets CJ . Denote by J+ := {J | ωJ > 0}.
For any given bounded set V � x̄, we denote by VJ the projection of V to the space IR|J |.
Then for each x ∈ V , xJ ∈ VJ for all J ∈ J . Therefore we have

dist
(
x, (∂g)−1(v̄)

)
≤

∑
J∈J+

dist
(
xJ , (ωJ ∂gJ )−1(v̄J )

)

=
∑

J∈J+
dist

(
xJ , (∂gJ )−1(v̄J /ωJ )

)

≤
∑

J∈J+
κv̄J /ωJ

dist (v̄J /ωJ , ∂gJ (xJ ))

=
∑

J∈J+

κv̄J /ωJ

ωJ

dist (v̄J , ωJ ∂gJ (xJ ))

≤ κ dist (v̄, ∂g(x)) ,

where the second inequality follows from the bounded metric subregularity of each ∂gJ at
(x̄J , v̄J /ωJ ) with modulus κv̄J /ωJ

on VJ , and κ := maxJ∈J+
κv̄J /ωJ

ωJ
.

We now derive the main result of this part in Theorem 4.

Theorem 4 Suppose that f satisfies Assumption 2 and g represents the group LASSO
regularizer. Then ∂F is bounded metrically subregular at (x̄, 0) for any x̄ ∈ X .

Proof By [72, Proposition 7], Γ2(0) = (∂g)−1(−ζ̄ ) is a polyhedral convex set and
by Lemmas 4 and 5, ∂g(x) is bounded metrically subregular. The result follows from
Theorem 3.

4.3 Scenario 3: ∂g is Metrically Subregular

In this scenario, f satisfies Assumption 2, ∂g is metrically subregular but not necessarily
bounded metrically subregular. We recall the calm intersection theorem in [27, Theorem
3.6], which is in fact a localized version of Proposition 8.

Proposition 9 (Calm intersection theorem) Let T1 : IRq1 ⇒ IRn, T2 : IRq2 ⇒ IRn be two
set-valued maps. Define set-valued maps

T (p1, p2) := T1(p1) ∩ T2(p2),

T̂ (p1) := T1(p1) ∩ T2(0).

Let x̃ ∈ T (0, 0). Suppose that both set-valued maps T1 and T2 are calm at (0, x̃) and T −1
1

is pseudo-Lipschitz at (x̃, 0). Then T is calm at (0, 0, x̃) if and only if T̂ is calm at (0, x̃).

By Lemma 3, Γ −1
1 is metrically subregular and pseudo-Lipschitz continuous at any

point on its graph. Applying Proposition 9 yields a sufficient condition for the metric
subregularity of ∂F as follows.

Theorem 5 Suppose that f satisfies Assumption 2. Given any x̄ ∈ X , if ∂g is metrically
subregular at (x̄,−ζ̄ ) where ζ̄ is defined as in (6) and Γ̂ (p1) := Γ1(p1) ∩ Γ2(0) is calm at
(0, x̄), then ∂F is metrically subregular at (x̄, 0).
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Compared to ∂F , the intersection of Γ1(p1) and Γ2(0), i.e.,

Γ̂ (p1) := Γ1(p1) ∩ Γ2(0) = {x | p1 = Ax − ȳ, 0 ∈ ζ̄ + ∂g(x)}
possesses more informative structures. Theorem 5 reveals that we may focus on the suf-
ficient condition ensuring the calmness of Γ̂ instead of that of S . Indeed, if Γ2(0) =
{x | 0 ∈ ζ̄ + ∂g(x)} is a convex polyhedral set then Γ̂ is a polyhedral multifunction. By the
polyhedral multifunction theory of Robinson [51, Proposition 1], given any x̄ ∈ X , Γ̂ is
upper-Lipschitz continuous at x̄ hence calm at (0, x̄). As a direct consequence of Theorem
5, we obtain the metric subregularity of ∂F at (x̄, 0).

Corollary 3 Suppose that f satisfies Assumption 2. Given any x̄ ∈ X , suppose that ∂g

is metrically subregular at (x̄,−ζ̄ ) where ζ̄ is defined as in (6), and Γ2(0) is a convex
polyhedral set, then ∂F is metrically subregular at (x̄, 0).

Application of Scenario 3 the indicator function of a ball constraint
We next demonstrate an application of scenario 3. To this end, let g represent the

indicator function of a closed ball, i.e., g(x) = δ
Br (0)(x). According to [52, Page 215],

∂g(x) = ∂δ
Br (0)(x) = N

Br (0)(x) where NC(c) denotes the normal cone to set C at c.

Lemma 6 Let g(x) := δ
Br (0)(x), where r is a positive constant. Then for any point (x̄, v̄) ∈

gph ∂g, ∂g is metrically subregular at (x̄, v̄). Specially, ∂g is bounded metrically subregular
at (x̄, v̄) provided v̄ = 0.

Proof Consider first the case where v̄ = 0. Obviously, N−1
Br (0)

(v̄) = Br (0) in this case.

Given an arbitrary bounded set V such that x̄ ∈ V and any κ > 0, if x ∈ V ∩Br (0), we have

dist
(
x,N−1

Br (0)
(v̄)

)
= dist

(
x,Br (0)

)
= 0 ≤ κ dist

(
v̄,N

Br (0)(x)
)

. (20)

On the other hand, as ∂g(x) = N
Br (0)(x) = ∅ if x �∈ Br (0), (20) holds for any x �∈ Br (0).

Thus ∂g is bounded metrically subregular at (x̄, v̄) when v̄ = 0. Consider the other case
where v̄ �= 0. It follows from [52, Corollary 23.5.1] that (∂g(x))−1 = ∂g∗, where g∗(v) :=
supx{〈v, x〉 − g(x)} denotes the conjugate function of g. As g(x) = δ

Br (0)(x), it can be
easily calculated that g∗(v) = r‖v‖. Since when v̄ �= 0, g∗(v) = r‖v‖ is second-order
continuously differentiable at v̄, then ∂g∗ = ∇g∗ and ∇g∗ is locally Lipschitz continuous
around v̄. Thus ∂g∗ is calm at (v̄, x̄) with modulus 2r

‖v̄‖ and ∂g is metrically subregular at
(x̄, v̄). Combining the case v̄ = 0 and v̄ �= 0, we have shown that ∂g is metrically subregular
at (x̄, v̄).

Proposition 10 Let g(x) = δ
Br (0)(x), where r is a positive constant. Given any x̄ ∈ X , if

one of the following statements is satisfied:

1. x̄ ∈ X ∩ bdBr (0) and ζ̄ as defined in (6) is nonzero, or
2. x̄ ∈ X ∩ intBr (0),

then Γ̂ (p1) := Γ1(p1) ∩ Γ2(0) = {x | p1 = Ax − ȳ, 0 ∈ ζ̄ + ∂g(x)} is calm at (0, x̄).

Proof Case 1: x̄ ∈ X ∩ intBr (0). In this case we have ∂g(x̄) = N
Br (0)(x̄) = {0}. It follows

that ζ̄ = 0 and thus in this case

Γ2(0) = {x | 0 ∈ N
Br (0)(x)} = Br (0). (21)
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Let ε > 0 be such that Bε(x̄) ⊂ Br (0). For any x ∈ Bε(x̄) ∩ Γ̂ (p1), let x1 be the projection
of x onto Γ1(0) = {x | 0 = Ax − ȳ}, i.e., x1 ∈ Γ1(0) and ‖x − x1‖ = dist(x, Γ1(0)).
Since x̄ ∈ Γ1(0), we have ‖x − x1‖ ≤ ‖x − x̄‖ < ε, and thus x1 ∈ Br (0) ⊂ Γ2(0) by
virtue of (21). Hence we have dist(x, Γ1(0) ∩ Γ2(0)) ≤ ‖x − x1‖ = dist(x, Γ1(0)) for any
x ∈ Bε(x̄) ∩ Γ̂ (p1). Since Γ1(0) is the solution to a linear system, thanks to Hoffman’s
error bound, there exists κ = σ̃min(A)−1 > 0 such that

dist(x, Γ̂ (0))≤dist(x, Γ1(0)) ≤ κ‖p1‖, ∀ x ∈ Bε(x̄) ∩ Γ̂ (p1),

or equivalently
dist(x, Γ̂ (0)) ≤ κdist(0, Γ̂ −1(x)), ∀ x ∈ Bε(x̄).

By definition, Γ̂ (p1) is calm at (0, x̄).
Case 2: x̄ ∈ X ∩ bdBr (0). Observe that when x lies on the boundary of a closed ball,

the normal cone to the closed ball at x must contain all rays in the direction of x, i.e.,
N

Br (0)(x) = {αx | α≥0} for any x ∈ Br (0). Since −ζ̄ �= 0 is a fixed direction and −ζ̄ ∈
N

Br (0)(x̄) = {αx̄ |α≥0}, it follow that

Γ2(0) = {x | 0 ∈ ζ̄ + N
Br (0)(x)} = {x̄}.

Moreover since Ax̄ = ȳ, we have

Γ̂ (p1) := Γ1(p1) ∩ Γ2(0) = {x | p1 = Ax − ȳ} ∩ {x̄} = ∅, whenever p1 �= 0.

In this case, the calmness of Γ̂ (p1) at (0, x̄) holds trivially by definition.
Combining cases 1 and 2, we obtain the calmness of Γ̂ (p1) at (0, x̄).

Thanks to Theorem 5, Lemma 6 and Proposition 10, we obtain the following result directly.

Theorem 6 Suppose that f satisfies Assumption 2 and g represents the indicator function
of a closed ball with modulus r > 0. Given any x̄ ∈ X , if one of the following statements is
satisfied:

1. x̄ ∈ X ∩ bdBr (0) and ζ̄ �= 0, or
2. x̄ ∈ X ∩ intBr (0),

then ∂F is metrically subregular at (x̄, 0).

Remark 2 The assumption that ζ̄ �= 0 whenever x̄ ∈ bdBr (0) in Theorem 6 may not
be dismissed for the ball constrained problem. We can use the following ball constrained
optimization problem given in Example 1,

min
x

F (x) := 1

2
(x2 − 1)2 + δ

B
(x),

to show it is possible that the desired metric subregularity fails to hold while the assumption
is not satisfied. It should be noted that x̄ = (0, 1) is the only point in solution set, and
the function f (x) := 1

2 (x2 − 1)2 has global minima at any (x1, 1) with a zero gradient
∇f (x1, 1) = (0, 0). However, for this example, the metric subregularity of ∂F does not
hold. Indeed, as shown in Example 1, Γ −1 is not metrically subregular at (x̄, 0). Then,
Proposition 6 tells us that ∂F can not be metrically subregular at (x̄, 0).

Remark 3 Recently in [29, Proposition 4.2], the authors showed that for the ball constrained
problem, when minx f (x) < minx F (x), F satisfies KL property with exponent 1

2 on each
x̄ ∈ X . According to Proposition 2, ∂F is then metrically subregular at (x̄, 0) for any
x̄ ∈ X . Indeed, the assumption minx f (x) < minx F (x) is equivalent to saying that ζ̄ �= 0.
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In this regard, Theorem 6 slightly improves [29, Proposition 4.2] in that we have shown that
for those x̄ ∈ X ∩ intBr (0), F satisfies the KL property with exponent 1

2 at x̄ automatically
without any restriction on ζ̄ . Moreover, in the next section, we will show how to estimate
the calmness modulus for ball constrained problem, see, e.g., Theorem 7. This error bound
estimation significantly improves [29, Proposition 4.2].

5 Calculus of Modulus of Metric Subregularity

So far we have verified the calmness conditions for S under Scenarios 1-3. In this section,
we focus on calculating the calmness modulus of S which relies heavily on the calm inter-
section theorem. Indeed, the calm intersection theorem bridges the metric subregularity of
Γ̂ −1 with the metric subregularity of ∂F . As a consequence, it enhances our understanding
on the metric subregularity of ∂F for some applications such as the LASSO and the group
LASSO. Moreover, it leads us to an interesting observation that the modulus of the metric
subregularity of ∂F is now computable. Therefore, thanks to Remark 1, the linear conver-
gence rate of the PGM or PALM can be explicitly calculated. In fact, by summarizing the
proofs in Propositions 6 and 8, and Lemma 3, we are now in the position to estimate the
modulus of the metric subregularity of ∂F through those of ∂g and Γ̂ −1 together with some
problem data.

Theorem 7 Given x̄ ∈ X . Suppose that f satisfies Assumption 2, ∂g is metrically subregu-
lar at (x̄,−ζ̄ ) with modulus κg and Γ̂ (p1) is calm at (0, x̄) with modulus κ , i.e., there exist
κ, κg > 0 and ε > 0 such that for all x ∈ Bε(x̄) ⊆ domf ,

dist
(
x, Γ̂ (0)

) ≤ κdist
(

0, Γ̂ −1 (x)
)

,

and
dist

(
x, (∂g)−1(−ζ̄ )

)
≤ κgdist

(−ζ̄ , ∂g (x)
)

.

Then ∂F is metrically subregular at (x̄, 0), i.e.,

dist
(
x, (∂F )−1(0)

)
≤ κ̃dist (0, ∂F (x)) ,∀x ∈ Bε(x̄),

where the modulus κ̃ := κ1 + 2c2 + 2c
√

κ1 + c2 > 0 with c := κ1(1+‖A‖Lh)

2
√

σ
, κ1 :=

(1+κ‖A‖) max{ 1
σ̃min(A)

, κg}, σ and Lh are the strong convexity modulus of h and Lipschitz
continuity constant of ∇h on Bε(x̄), respectively.

Proof By Lemma 3, Γ −1
1 is bounded metrically subregular with modulus 1

σ̃min(A)
and glob-

ally pseudo-Lipschitz continuous at 0 with modulus ‖A‖. Hence it follows by the proof of
Proposition 8 that Γ −1(p1, p2) is bounded metrically subregular at (x̄, 0, 0) with modulus

κ1 = (1 + 2κ‖A‖) max{ 1

σ̃min(A)
, κg}.

Now applying Proposition 6, with parameter c = κ1(1+‖A‖Lh)

2
√

σ
, we have that ∂F (x) is

bounded metrically subregular at (x̄, 0) with modulus κ̃ = κ1 +2c2 +2c
√

κ1 + c2 > 0.

Thanks to Theorem 7, as long as we know the moduli of the metric subregularity of
∂g and Γ̂ −1, the modulus of the metric subregularity of ∂F can be estimated. The main
difficulty is associated with the estimation of the calmness modulus of Γ̂ . Based on different
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problem structures, we may divide our discussion for the calmness modulus calculation of
Γ̂ for applications into following two classes.

Class 1. As we observed in Sections 4.1 and 4.2, Γ̂ actually represents a perturbed linear
system on a convex polyhedral set for a wide range of applications, including the
LASSO, the fused LASSO, the OSCAR and the group LASSO. Although com-
puting the calmness modulus is always a challenging task, thanks to the calm
intersection theorem, Γ̂ can be recharacterized as a partially perturbed polyhe-
dral set for the mentioned applications. Hence, the calmness modulus of Γ̂ is
achievable by the Hoffman’s error bound theory (see Lemma 7) or its variant (see
Lemma 8).

Class 2. The calmness modulus calculation for ball constrained problem, however, is a
little different. In fact, in the proof of Proposition 10, the calmness modulus of
Γ̂ has been explicitly characterized. Together with Lemma 6 where the metric
subregularity modulus of ∂g has been calculated, the calculus rule for the metric
subregularity modulus of ∂F presented in Theorem 7 is therefore applicable.

Remark 4 We can see from the discussions above that for both two classes, the calmness
modulus of Γ̂ is achieved by using the constant in Hoffman’s error bound or its variant.
Hence, the main difficulty arises from the estimation of the Hoffman’s error bound con-
stant. In the two illustrative examples associated with the LASSO and group LASSO given
below, though we can give the formulae of the constants of Hoffman’s error bound and its
variant through (24) and (27), it is still a challenging task to calculate a sharp estimation
for the Hoffman’s error bound constant or its variant through such formulae. Recently, [45,
46] have proposed tractable numerical algorithms for computing Hoffman constants. These
algorithms can be used in the calmness modulus calculation of Γ̂ .

We next show how to calculate the calmness modulus on specific application problems.
We take the LASSO and group LASSO as illustrative examples while the extension to other
problems is purely technical and hence omitted.

Calculus of calmness modulus for the LASSO Suppose that f satisfies Assumption 2 and
g(x) = λ‖x‖1 with λ > 0 in problem (1). Recall that −ζ̄ ∈ ∂g(x̄) is defined as in (6). By
Lemma 5, ∂g(x) is bounded metrically subregular at (x̄,−ζ̄ ). That is, for any M > 0,

dist
(
x, (∂g)−1(−ζ̄ )

)
≤ κl1 dist

(−ζ̄ , ∂g (x)
)
, ∀ ‖x‖ ≤ M,

where κl1 = κ−ζ̄ /λ

λ
and κ−ζ̄ /λ is the metric subregularity modulus of ∂‖ · ‖1 at (x̄,−ζ̄ /λ). It

follows by Lemma 4 that κ−ζ̄ /λ = M
λ(1−c̄)

with

c̄ = max
{i:|ζ̄i /λ|<1}

|ζ̄i/λ|; c̄ = 0 if {i : |ζ̄i/λ|<1} = ∅. (22)

We are left to estimate the calmness modulus of Γ̂ (p). Again under the setting that g(x) =
λ‖x‖1 for some λ > 0, given ζ̄ , we shall define index sets

I+ := {i ∈ {1, . . . , n} | ζ̄i = λ},
I− := {i ∈ {1, . . . , n} | ζ̄i = −λ},
I0 := {i ∈ {1, . . . , n} | |ζ̄i | < λ}.

Moreover, we shall need the following notations.
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– ei denotes the vector whose ith entry is 1 and other entries are zero,
– E0 ∈ IR|I0|×n denotes a matrix whose rows are {ei}i∈I0 ,
– E1 ∈ IR|I+|×n denotes a matrix whose rows are {ei}i∈I+ ,
– E2 ∈ IR|I−|×n denotes a matrix whose rows are {−ei}i∈I− .

By constructing two matrices as

Ã :=
(

A

E0

)
, Ẽ :=

(
E1
E2

)
,

Γ̂ can be rewritten as a perturbed system of linear equality and inequality constraints:

Γ̂ (p) = {x ∈ IRn | p = Ax − ȳ, E0x = 0, Ẽx ≤ 0}. (23)

We are in the position to apply Hoffman’s error bound to calculate the calmness modulus of
Γ̂ . We first recall the Hoffman’s error bound theory.

Lemma 7 (Hoffman’s error bound) [19, 24, 28] Let P be the polyhedral convex set P :=
{x | Ãx = b̃, C̃x ≤ d̃}, where Ã, C̃ are given matrices and b̃, d̃ are given vectors of
appropriate sizes. Then for any x, it holds

dist (x, P ) ≤ θ(Ã, C̃)

∥∥∥(
Ãx − b̃, max{0, C̃x − d̃}

)∥∥∥ ,

where

θ(Ã, C̃) := sup
u,v

⎧⎨
⎩‖(u, v)‖

∣∣∣∣∣∣
‖ÃT u + C̃T v‖ = 1, v ≥ 0,

The corresponding rows of Ã, C̃ to u, v’s
non-zero elements are linearly independent

⎫⎬
⎭ . (24)

Applying the Hoffman’s error bound to the perturbed linear system in (23), we obtain
the modulus for the calmness of the set-valued map Γ̂ (p).

Proposition 11 Suppose that g(x) = λ‖x‖1. For a given ζ̄ , Γ̂ (p) is globally calm with
modulus θ(Ã, Ẽ) defined as in (24), i.e.,

dist
(
x, Γ̂ (0)

) ≤ θ(Ã, Ẽ)dist
(

0, (Γ̂ )−1(x)
)

, ∀ x.

In Theorem 7, using κg = M
λ(1−c̄)

and κ = θ(Ã, Ẽ) we are eventually able to calculate
the calmness modulus for the LASSO.

Theorem 8 Consider the LASSO problem. That is, f satisfies Assumption 2 and g(x) =
λ‖x‖1 with λ > 0 in problem (1). For any given positive number M such that h is strongly
convex on MB̄ with modulus σ and ∇h is Lipschitz continuous on MB̄ with constant Lh,
there exists κ̃Lasso > 0 such that

dist
(
x, (∂F )−1(0)

)
≤ κ̃Lassodist (0, ∂F (x)) , ∀ ‖x‖ ≤ M .

In particular, κ̃Lasso = κLasso + 2cLasso
2 + 2cLasso

√
κLasso + cLasso

2 > 0 with

cLasso = κLasso(1 + ‖A‖Lh)

2
√

σ
, κLasso = (1 + θ(Ã, Ẽ)‖A‖) max{ 1

σ̃min(A)
,

M

λ(1 − c̄)
}

where c̄ is defined as in (22).
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Calculus of calmness modulus for the group LASSO Suppose that f satisfies Assumption
2 and g(x) := ∑

J∈J ωJ ‖xJ ‖2, where ωJ ≥ 0 and J is a partition of {1, . . . , n} is the
group LASSO regularizer. Recall that −ζ̄ ∈ ∂g(x̄) is defined as in (6). According to Lem-
mas 4 and 5, ∂g(x) is bounded metrically subregular at (x̄,−ζ̄ ) and for any given positive
number M ,

dist
(
x, (∂g)−1(−ζ̄ )

)
≤ κ̃g dist

(−ζ̄ , ∂g(x)
)
, ∀ ‖x‖ ≤ M,

where

κ̃g := max
J∈J+

{κ−ζ̄J /ωJ

ωJ

} = max
J∈J+

{κgJ
}, (25)

with κgJ
= M

ωJ −‖ζ̄J ‖ , if ‖ζ̄J ‖<ωJ ; κgJ
=M, if ‖ζ̄J ‖=ωJ , and J+ := {J | ωJ >0}.

We shall next estimate the calmness modulus of Γ̂ . Define the index set

J1 := {J ∈ J+ | ‖ζ̄J ‖ = ωJ , ωJ > 0}.
Moreover, for simplicity we shall need the following notations.

– For any J ∈ J1, g̃J denotes the vector whose j th entry is ζ̄j for j ∈ J and other entries
are zero,

– K ∈ IRp×n denotes a matrix whose rows are {ei}i∈J+ with J+ = ∪J∈J+J , and p =
|J+|,

– D ∈ IRn×|J1| denotes a matrix whose columns are {−g̃J }J∈J1 .

From the formula for the subdifferential of the group LASSO in [72, Proposition 7], it is
easy to see that Γ̂ can be characterized in terms of the above notation as

Γ̂ (p) = {x ∈ IRn | p = Ax − ȳ, Kx = KDα, α ≥ 0}. (26)

Note that for the LASSO, Γ̂ (p) can be characterized as a perturbed linear equality
and inequality system, see (23). The group LASSO, however, is to some extent different.
Actually, one may not easily characterize Γ̂ (p) in terms of linear equality and inequality
explicitly. Instead, as shown in (26), Γ̂ (p) can be expressed as a linear system perturbed
over a convex cone. Unfortunately, the Hoffman’s error bound theory is not directly applica-
ble for Γ̂ (p) in (26). In order to estimate the calmness modulus of Γ̂ for the group LASSO,
we shall first establish an error bound result analogous to Hoffman’s error bound, which is
inspired by [28, 70].

Lemma 8 (Partial error bound over a convex cone) Let P be a polyhedral set P := {x ∈
IRn | Ãx = b̃, K̃x ∈ D}, where Ã is a matrix of size m × n, K̃ is a matrix of size p × n,
b̃ ∈ IRm, D := {z | z = ∑l

i=1 αidi, αi ≥ 0}, and {di}li=1 ⊆ IRp . Then

dist (x, P ) ≤ θ̄ (M)

∥∥∥Ãx − b̃

∥∥∥ , ∀x ∈ D,

where M :=
[

ÃT −K̃T 0
0 D̃T −I

]
, I and 0 are identity and zero matrices of appropriate

order, D̃ ∈ IRp×l is the matrix whose columns are {di}li=1 and

θ̄ (M) := sup
λ,μ,ν

⎧⎨
⎩‖λ‖

∣∣∣∣∣∣
‖M(λ, μ, ν)‖ = 1, ν ≥ 0,

The corresponding rows of M to λ, μ, ν’s
non-zero elements are linearly independent.

⎫⎬
⎭ . (27)
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Proof For any x /∈ P , let x̄ denote the projector of x on P , i.e., x̄ = arg miny∈P ‖x − y‖.
Hence there is ᾱ ≥ 0 such that (x̄, ᾱ) is an optimal solution of the following problem

min
y,α

1
2‖y − x‖2

s.t . Ãy = b̃, D̃α = K̃y, α ≥ 0.

The Karush-Kuhn-Tucker (KKT) optimality condition for above problem yields the exis-
tence of multipliers λ, μ, ν such that

x̄ − x + ÃT λ − K̃T μ = 0,

D̃T μ − ν = 0, (28)

ν ≥ 0, νi ᾱi = 0.

Define index set I ′ := {i ∈ {1, . . . , l} | ᾱi = 0}, matrix EI ′ ∈ IRl×l as EI ′ ii = 1 if i ∈ I ′

and EI ′ ij = 0 otherwise. Let MI ′ :=
[

ÃT −K̃T 0
0 D̃T −EI ′

]
, and

FI ′ := {(λ, μ, ν) | MI ′(λ, μ, ν) = (x − x̄, 0, 0), ν ≥ 0}.
According to [56, Theorem 2.12.4] or [28, Lemma 2.1], there is (λ̂, μ̂, ν̂) ∈ FI ′ such that the
corresponding columns of MI ′ to (λ̂, μ̂, ν̂)’s non-zero elements are linearly independent.
It is easy to see that (λ̂, μ̂, ν̂) also satisfies (28). It follows that

‖x̄ − x‖2 = −(x̄ − x)T ÃT λ̂ + (x̄ − x)T K̃T μ̂

= (Ãx − b̃)T λ̂ + (x̄ − x)T K̃T μ̂,

where the second equality comes from Ãx̄ = b̃. Moreover, x̄T K̃T μ̂ = ᾱT D̃T μ̂ = ᾱT ν̂ = 0,
and because x ∈ D, there exists αx ≥ 0 such that K̃T x = D̃αx , thus xT K̃T μ̂ = αT

x D̃T μ̂ =
αT

x ν̂ ≥ 0. Therefore, defining

θ̄ (MI ′) := sup
λ,μ,ν

⎧⎨
⎩‖λ‖

∣∣∣∣∣∣
‖MI ′(λ, μ, ν)‖ = 1, ν ≥ 0,

The corresponding rows of MI ′ to λ,μ, ν’s
non-zero elements are linearly independent.

⎫⎬
⎭ ,

we may conclude that

‖x̄ − x‖2 ≤ (Ãx − b̃)T λ̂

≤ ‖Ãx − b̃‖‖λ̂‖
≤ θ̄ (MI ′)‖Ãx − b̃‖‖x̄ − x‖,

and thus

‖x̄ − x‖ ≤ θ̄ (MI ′)‖Ãx − b̃‖.

And, it can be easily seen that for any subset I of {1, . . . , l},
θ̄ (MI ) ≤ θ̄ (M).

Eventually we arrive at the conclusion, i.e.,

dist (x, P ) = ‖x̄ − x‖ ≤ θ̄ (M)

∥∥∥Ãx − b̃

∥∥∥ , ∀ x ∈ D.

Lemma 8 can be considered as a variant of Hoffman’s error bound theory. Applying
Lemma 8 to Γ̂ (p) in (26), we obtain the following result.
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Proposition 12 Suppose that g(x) := ∑
J∈J ωJ ‖xJ ‖2, where ωJ ≥ 0 and J is a partition

of {1, . . . , n}. Γ̂ (p) is globally calm with modulus θ̄ (M), i.e.,

dist
(
x, Γ̂ (0)

) ≤ θ̄ (M)dist
(

0, (Γ̂ )−1(x)
)

, ∀ x,

where

M :=
[

AT −KT 0
0 DT KT −I

]
,

and θ̄ (M) is defined as in (27).

In Theorem 7, using κg = κ̃g and κ = θ̄ (M) we obtained the calmness modulus for the
group LASSO.

Theorem 9 Consider the group LASSO. That is, f satisfies Assumption 2 and g(x) :=∑
J∈J ωJ ‖xJ ‖2, where ωJ ≥ 0 and J is a partition of {1, . . . , n}, in problem (1). For any

given positive number M such that h is strongly convex on MB̄ with modulus σ and ∇h is
Lipschitz continuous on MB̄ with constant Lh, there exists κ̃gLasso > 0 such that

dist
(
x, (∂F )−1(0)

)
≤ κ̃gLassodist (0, ∂F (x)) , ∀ ‖x‖ ≤ M .

In particular, κ̃gLasso = κgLasso + 2cgLasso
2 + 2cgLasso

√
κgLasso + cgLasso

2 > 0 with

cgLasso = κgLasso(1+‖A‖Lh)

2
√

σ
, κgLasso = (1 + θ̄ (M)‖A‖) max{ 1

σ̃min(A)
, κ̃g}, where κ̃g is

defined as in (25).

6 Conclusion

In summary, the variational analysis perspective we propose enhances our understanding of
linear convergence of some common first order methods. This new perspective allows us to
use extensive advanced tools or techniques in variational analysis literatures to investigate
algorithmic convergence behaviors.

• The use of calm intersection theorem offers a tight and equivalent characterization
of the calmness of Γ , that is, the calmness of Γ̂ := Γ1(p1) ∩ Γ2(0). This equiva-
lence has sheded some light on model structures which ensure the required error bound
for linear convergence. Metric subregularity/calmness/error bound are all point-based
properties. Therefore usually they cannot satisfy everywhere automatically unless the
system under consideration is polyhedral. We justify the essential polyhedral structures
for popular applications where the Luo-Tseng error bound conditions are known to be
satisfied everywhere automatically. When g represents the nuclear norm regularizer, by
its nature Γ2(0) and hence Γ̂ are lack of polyhedricity. In this regard, we cannot expect
that the calmness of Γ is satisfied automatically in this case. Some recently-developed
verifiable sufficient conditions for the calmness of Γ̂ could be further considered, see,
e.g., [18, 21, 31]. By doing so, the sufficient conditions given in [72] which seem to be
very restrictive and hence impractical could be significantly improved.

• This new perspective also inspires deeper understanding on the convergence behav-
iors of some other first order methods not discussed in this paper, for example, the
alternating direction method of multipliers (ADMM) and its variants. In particular,
in a recent paper [67], using the calm intersection theorem and other techniques in
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variational analysis, the point-based metric subregularity/calmness is proved to hold
automatically for a wide range of applications arising in statistical learning. Hence the
empirically observed linear convergence of a number of algorithms is tightly proved;
and the understanding of linear convergence of ADMM and its variants is significantly
enhanced.

Appendix

Proof of Theorem 1 Since Lik is the Lipschitz constant of ∇ik f , ck
i ≥ Li and xk+1

j =
xk
j ,∀j �= ik , we have

f (xk+1) ≤ f (xk) +
〈
∇ik f (xk), xk+1

ik
− xk

ik

〉
+ ck

ik

2
‖xk+1

ik
− xk

ik
‖2,

which implies that

F(xk+1) ≤ F(xk) +
〈
∇ik f (xk), xk+1

ik
− xk

ik

〉
+ ck

ik

2
‖xk+1

ik
− xk

ik
‖2 + gik (x

k+1
ik

) − gik (x
k
ik
).

Combining with the iteration scheme (3), we have

F(xk+1) − F(xk) ≤ min
tik

{〈
∇ik f (xk), tik

〉
+ ck

ik

2
t2
ik

+ gik (x
k
ik

+ tik ) − gik (x
k
ik
)

}
,

where tik := xik −xk
ik

. Recall that for a given iteration point xk , the next iteration point xk+1

is obtained by using the scheme (3) where the index ik is randomly chosen from {1, . . . , N}
with the uniform probability distribution. Conditioned on xk and taking expectation with
respect to the random index ik , we obtain

E[F(xk+1) − F(xk) | xk]

≤ E

{
min
tik

〈
∇ik f (xk), tik

〉
+ ck

ik

2
t2
ik

+ gik (x
k
ik

+ tik ) − gik (x
k
ik
)

∣∣∣ xk

}
. (29)

Now, we are going to estimate the right hand side in the above inequality

E

{
min
tik

〈
∇ik f (xk), tik

〉
+ ck

ik

2
t2
ik

+ gik (x
k
ik

+ tik ) − gik (x
k
ik
)

∣∣∣ xk

}

= 1

N

N∑
i=1

{
min

ti

〈
∇if (xk), ti

〉
+ ck

i

2
t2
i + gi(x

k
i + ti ) − gi(x

k
i )

}
(30)

≤ 1

N
min

t

N∑
i=1

{〈
∇if (xk), ti

〉
+ C

2
t2
i + gi(x

k
i + ti ) − gi(x

k
i )

}

= 1

N
min

y

{〈
∇f (xk), y − xk

〉
+ C

2
‖y − xk‖2 + g(y) − g(xk)

}

= 1

N
(FC(xk) − F(xk)),

where t :=(t1, . . . , tN ) and FC(x) := miny

{
f (x)+〈∇f (x), y−x〉+ C

2 ‖y−x‖2+g(y)
}
.
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Furthermore, we set

x̂k := (I + 1

C
∂g)−1

(
xk − 1

C
∇f (xk)

)

= arg min
y

{〈
∇f (xk), y − xk

〉
+ C

2
‖y − xk‖2 + g(y)

}
.

It follows immediately that

g
(
xk

)
≥ g

(
x̂k

) −
〈
∇f (xk) + C(x̂k − xk), xk − x̂k

〉
,

which yields that,

f
(
xk

)
+g

(
xk

)
≥ f

(
xk

)
+

〈
∇f (xk), x̂k − xk

〉
+ C

2
‖x̂k −xk‖2 +g

(
x̂k

)+ C

2
‖x̂k −xk‖2,

and hence

F(xk) ≥ FC(xk) + C

2
‖x̂k − xk‖2. (31)

Let x̃ := ProjX (x) for any x and thus f (x̃) + g(x̃) = F ∗. Then we have

FC(x) − F ∗ = min
y

{
f (x) + 〈∇f (x), y − x〉 + C

2
‖y − x‖2 + g(y)

}
− f (x̃) − g(x̃)

≤ f (x) − f (x̃) + 〈∇f (x), x̃ − x〉 + C

2
‖x̃ − x‖2

≤ L + C

2
‖x̃ − x‖2 = L + C

2
dist (x,X )2 ,

where L is the Lipschitz constant of ∇f . Plugging x = xk into the above inequalities, we
have

FC(xk) − F ∗ ≤ L + C

2
dist

(
xk,X

)2

≤ κ(L + C)

2
‖x̂k − xk‖2

≤ κ(1 + L/C)(F (xk) − FC(xk)),

where the second inequality follows from (14) and the third inequality is a direct conse-
quence of (31). Then we have

F(xk) − F ∗ = F(xk) − FC(xk) + FC(xk) − F ∗

≤ (1 + κ(1 + L/C))(F (xk) − FC(xk)). (32)

By (29), (30) and (32), we have

E[F(xk+1) − F(xk) | xk] ≤ 1

N
(FC(xk) − F(xk)) ≤ 1

N
· 1

1 + κ(1 + L/C)
(F ∗ − F(xk)),

therefore

E[F(xk+1) − F ∗ | xk] ≤
(

1 − 1

N(1 + κ(1 + L/C))

)
(F (xk) − F ∗).

For any l ≥ 1, combining the above inequality over k = 0, 1, . . . , l − 1, taking expectation
with all the history, we obtain

E[F(xl) − F ∗] ≤ σ l(F (x0) − F ∗),
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where σ =
(

1 − 1
N(1+κ(1+L/C))

)
∈ (0, 1), and hence the R-BCPGM achieves a linear

convergence rate in terms of the expected objective value.
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